Abstract

In this paper, we present the fabrication and packaging of a cantilever-based airflow sensor integrated with optical fiber. The sensor consists of a micro Fabry–Perot (FP) cavity including a fiber and a micro cantilever that is fabricated using the photolithography method. Airflow causes a small deflection of the micro cantilever and changes the cavity length of the FP, which makes the fringe shift. The pressure distribution and velocity streamlines across the cantilever resulted from the airflow in the channel have been simulated by the finite element method. The experimental results demonstrate that the sensor has a linear sensitivity of 190 [fringe shift (pm)] per (l/min) and a minimum detectable airflow change of 0.05(l/min).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
    [CrossRef]
  2. S. Kim, T. Nam, and S. Park, “Measurement of flow direction and velocity using a micromachined flow sensor,” Sens. Actuators A 114, 312–318 (2004).
    [CrossRef]
  3. M. Piotto, G. Pennelli, and P. Bruschi, “Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor,” Microelectron. Eng. 88, 2214–2217 (2011).
    [CrossRef]
  4. M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010).
    [CrossRef]
  5. Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing microcantilever structure,” Sensors 7, 2389–2401 (2007).
    [CrossRef]
  6. R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
    [CrossRef]
  7. N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009).
    [CrossRef]
  8. Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
    [CrossRef]
  9. R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
    [CrossRef]
  10. C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” J. Micromech. Microeng. 13, 634–645 (2003).
    [CrossRef]
  11. G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).
  12. H. Ernst, A. Jachimowicz, and G. A. Urban, “High resolution flow characterization in bio-MEMS,” Sens. Actuators A 100, 54–62 (2002).
    [CrossRef]
  13. S. C. Roh, Y. M. Choi, and S. Y. Kim, “Sensitivity enhancement of a silicon micro-machined thermal flow sensor,” Sens. Actuators A 128, 1–6 (2006).
    [CrossRef]
  14. N. T. Nguyen, “Micromachined flow sensors—a review,” Flow Meas. Instrum. 8, 7–16 (1997).
    [CrossRef]
  15. N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
    [CrossRef]
  16. P. Caldas, P. A. S. Jorge, G. Rego, O. Frazao, J. L. Santos, L. A. Ferreira, and F. Araujo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt. 50, 2738–2743 (2011).
    [CrossRef]
  17. S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003).
    [CrossRef]
  18. I. Padron, A. T. Fiory, and N. M. Ravindra, “Novel MEMS Fabry–Perot interferometric pressure sensors,” Mater. Sci. Forum 638–642, 1009–1014 (2010).
    [CrossRef]
  19. A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
    [CrossRef]
  20. J. X. Fang, H. F. Taylor, and H. S. Choi, “Fiber-optic Fabry–Perot flow sensor,” Microw. Opt. Technol. Lett. 18, 209–211 (1998).
    [CrossRef]
  21. M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
    [CrossRef]
  22. X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
    [CrossRef]
  23. G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
    [CrossRef]
  24. C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011).
    [CrossRef]
  25. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6, 51–59 (1967).
    [CrossRef]
  26. J. A. Stone and J. H. Zimmerman, “Index of Refraction of Air,” http://emtoolbox.nist.gov/Wavelength/Ciddor.asp .

2012

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

2011

C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011).
[CrossRef]

M. Piotto, G. Pennelli, and P. Bruschi, “Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor,” Microelectron. Eng. 88, 2214–2217 (2011).
[CrossRef]

P. Caldas, P. A. S. Jorge, G. Rego, O. Frazao, J. L. Santos, L. A. Ferreira, and F. Araujo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt. 50, 2738–2743 (2011).
[CrossRef]

2010

I. Padron, A. T. Fiory, and N. M. Ravindra, “Novel MEMS Fabry–Perot interferometric pressure sensors,” Mater. Sci. Forum 638–642, 1009–1014 (2010).
[CrossRef]

M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010).
[CrossRef]

2009

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009).
[CrossRef]

2007

Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing microcantilever structure,” Sensors 7, 2389–2401 (2007).
[CrossRef]

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
[CrossRef]

2006

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

S. C. Roh, Y. M. Choi, and S. Y. Kim, “Sensitivity enhancement of a silicon micro-machined thermal flow sensor,” Sens. Actuators A 128, 1–6 (2006).
[CrossRef]

2005

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
[CrossRef]

2004

S. Kim, T. Nam, and S. Park, “Measurement of flow direction and velocity using a micromachined flow sensor,” Sens. Actuators A 114, 312–318 (2004).
[CrossRef]

2003

C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” J. Micromech. Microeng. 13, 634–645 (2003).
[CrossRef]

S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003).
[CrossRef]

2002

H. Ernst, A. Jachimowicz, and G. A. Urban, “High resolution flow characterization in bio-MEMS,” Sens. Actuators A 100, 54–62 (2002).
[CrossRef]

2001

R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
[CrossRef]

1998

J. X. Fang, H. F. Taylor, and H. S. Choi, “Fiber-optic Fabry–Perot flow sensor,” Microw. Opt. Technol. Lett. 18, 209–211 (1998).
[CrossRef]

1997

N. T. Nguyen, “Micromachined flow sensors—a review,” Flow Meas. Instrum. 8, 7–16 (1997).
[CrossRef]

1995

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

1967

Acar, C.

C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” J. Micromech. Microeng. 13, 634–645 (2003).
[CrossRef]

Aiyar, A. R.

C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011).
[CrossRef]

Allen, M. G.

C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011).
[CrossRef]

Allen, N. J.

N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009).
[CrossRef]

Araujo, F.

Beltrán-Pérez, G.

M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
[CrossRef]

Bruschi, P.

M. Piotto, G. Pennelli, and P. Bruschi, “Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor,” Microelectron. Eng. 88, 2214–2217 (2011).
[CrossRef]

Butt, H. J.

R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
[CrossRef]

Caldas, P.

Castillo-Mixcóatl, J.

M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
[CrossRef]

Chan, I. H.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

Chen, N.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

Chiang, C. M.

Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing microcantilever structure,” Sensors 7, 2389–2401 (2007).
[CrossRef]

Chin, K. K.

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

Chiu, C. W.

Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
[CrossRef]

Choi, H. S.

J. X. Fang, H. F. Taylor, and H. S. Choi, “Fiber-optic Fabry–Perot flow sensor,” Microw. Opt. Technol. Lett. 18, 209–211 (1998).
[CrossRef]

Choi, Y. M.

S. C. Roh, Y. M. Choi, and S. Y. Kim, “Sensitivity enhancement of a silicon micro-machined thermal flow sensor,” Sens. Actuators A 128, 1–6 (2006).
[CrossRef]

Chou, P. C.

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

Cipullo, A.

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

Davenport, A. A.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

De Filippis, F.

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

Declercq, F. E.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

DeMaio, L.

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

Durán-Sánchez, M.

M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
[CrossRef]

Engel, J. M.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

Ernst, H.

H. Ernst, A. Jachimowicz, and G. A. Urban, “High resolution flow characterization in bio-MEMS,” Sens. Actuators A 100, 54–62 (2002).
[CrossRef]

Fang, J. X.

J. X. Fang, H. F. Taylor, and H. S. Choi, “Fiber-optic Fabry–Perot flow sensor,” Microw. Opt. Technol. Lett. 18, 209–211 (1998).
[CrossRef]

Farmer, K. R.

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

Ferreira, L. A.

Fiory, A. T.

I. Padron, A. T. Fiory, and N. M. Ravindra, “Novel MEMS Fabry–Perot interferometric pressure sensors,” Mater. Sci. Forum 638–642, 1009–1014 (2010).
[CrossRef]

Frazao, O.

Fu, L. M.

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

Grattarola, M.

R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
[CrossRef]

Gruca, G.

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

Hartwell, P. G.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

Heeck, K.

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

Hill, G. C.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

Hsiai, T. K.

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

Hsueh, T. H.

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

Iannuzzi, D.

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

Jachimowicz, A.

H. Ernst, A. Jachimowicz, and G. A. Urban, “High resolution flow characterization in bio-MEMS,” Sens. Actuators A 100, 54–62 (2002).
[CrossRef]

Jiang, F.

Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
[CrossRef]

Jorge, P. A. S.

Kim, E. S.

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

Kim, S.

S. Kim, T. Nam, and S. Park, “Measurement of flow direction and velocity using a micromachined flow sensor,” Sens. Actuators A 114, 312–318 (2004).
[CrossRef]

S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003).
[CrossRef]

S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003).
[CrossRef]

Kim, S. H.

C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011).
[CrossRef]

Kim, S. Y.

S. C. Roh, Y. M. Choi, and S. Y. Kim, “Sensitivity enhancement of a silicon micro-machined thermal flow sensor,” Sens. Actuators A 128, 1–6 (2006).
[CrossRef]

Kim, Y.

S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003).
[CrossRef]

Lee, C. Y.

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing microcantilever structure,” Sensors 7, 2389–2401 (2007).
[CrossRef]

Li, B.

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

Lin, Q.

Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
[CrossRef]

Liu, C.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

Ma, R. H.

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

Matsuoka, Y.

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Matsuzaka, H.

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Melamud, R.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

Méndez-Otero, M.

M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
[CrossRef]

Minardo, A.

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

Muñoz-Aguirre, S.

M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
[CrossRef]

Nam, T.

S. Kim, T. Nam, and S. Park, “Measurement of flow direction and velocity using a micromachined flow sensor,” Sens. Actuators A 114, 312–318 (2004).
[CrossRef]

Nguyen, N. T.

N. T. Nguyen, “Micromachined flow sensors—a review,” Flow Meas. Instrum. 8, 7–16 (1997).
[CrossRef]

Owens, J. C.

Padron, I.

I. Padron, A. T. Fiory, and N. M. Ravindra, “Novel MEMS Fabry–Perot interferometric pressure sensors,” Mater. Sci. Forum 638–642, 1009–1014 (2010).
[CrossRef]

Pandya, S.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

Park, S.

S. Kim, T. Nam, and S. Park, “Measurement of flow direction and velocity using a micromachined flow sensor,” Sens. Actuators A 114, 312–318 (2004).
[CrossRef]

S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003).
[CrossRef]

Pennelli, G.

M. Piotto, G. Pennelli, and P. Bruschi, “Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor,” Microelectron. Eng. 88, 2214–2217 (2011).
[CrossRef]

Piotto, M.

M. Piotto, G. Pennelli, and P. Bruschi, “Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor,” Microelectron. Eng. 88, 2214–2217 (2011).
[CrossRef]

Pruitt, B. L.

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

Raiteri, R.

R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
[CrossRef]

Ravindra, N. M.

I. Padron, A. T. Fiory, and N. M. Ravindra, “Novel MEMS Fabry–Perot interferometric pressure sensors,” Mater. Sci. Forum 638–642, 1009–1014 (2010).
[CrossRef]

Rego, G.

Roh, S. C.

S. C. Roh, Y. M. Choi, and S. Y. Kim, “Sensitivity enhancement of a silicon micro-machined thermal flow sensor,” Sens. Actuators A 128, 1–6 (2006).
[CrossRef]

Roman, H. T.

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

Rosamond, M. C.

N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009).
[CrossRef]

Rouhanizadeh, M.

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

Russo, O. L.

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

Santos, J. L.

Sato, K.

M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010).
[CrossRef]

Shikida, M.

M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010).
[CrossRef]

Shimada, S.

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Shkel, A. M.

C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” J. Micromech. Microeng. 13, 634–645 (2003).
[CrossRef]

Sims-Williams, D. B.

N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009).
[CrossRef]

Skládal, P.

R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
[CrossRef]

Song, C.

C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011).
[CrossRef]

Soundararajan, G.

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

Tai, Y. C.

Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
[CrossRef]

Tanabe, M.

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Taylor, H. F.

J. X. Fang, H. F. Taylor, and H. S. Choi, “Fiber-optic Fabry–Perot flow sensor,” Microw. Opt. Technol. Lett. 18, 209–211 (1998).
[CrossRef]

Tucker, C.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

Uki, S.

M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010).
[CrossRef]

Urban, G. A.

H. Ernst, A. Jachimowicz, and G. A. Urban, “High resolution flow characterization in bio-MEMS,” Sens. Actuators A 100, 54–62 (2002).
[CrossRef]

Wang, X.

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

Wang, Y. H.

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing microcantilever structure,” Sensors 7, 2389–2401 (2007).
[CrossRef]

Wood, D.

N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009).
[CrossRef]

Xu, Y.

Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
[CrossRef]

Yamada, K.

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Yamamoto, Y.

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Yang, Y.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

Yasukawa, A.

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Yokota, T.

M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010).
[CrossRef]

Yu, H.

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

Zeni, L.

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

Appl. Opt.

Flow Meas. Instrum.

N. T. Nguyen, “Micromachined flow sensors—a review,” Flow Meas. Instrum. 8, 7–16 (1997).
[CrossRef]

J. Microelectromech. Syst.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007).
[CrossRef]

J. Micromech. Microeng.

C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” J. Micromech. Microeng. 13, 634–645 (2003).
[CrossRef]

Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995).
[CrossRef]

Mater. Sci. Forum

I. Padron, A. T. Fiory, and N. M. Ravindra, “Novel MEMS Fabry–Perot interferometric pressure sensors,” Mater. Sci. Forum 638–642, 1009–1014 (2010).
[CrossRef]

Microelectron. Eng.

M. Piotto, G. Pennelli, and P. Bruschi, “Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor,” Microelectron. Eng. 88, 2214–2217 (2011).
[CrossRef]

Microelectron. J.

X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006).
[CrossRef]

Microsys. Technol.

R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009).
[CrossRef]

Microw. Opt. Technol. Lett.

J. X. Fang, H. F. Taylor, and H. S. Choi, “Fiber-optic Fabry–Perot flow sensor,” Microw. Opt. Technol. Lett. 18, 209–211 (1998).
[CrossRef]

Procedia Chem.

N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009).
[CrossRef]

Sens. Actuators A

M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010).
[CrossRef]

Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005).
[CrossRef]

S. Kim, T. Nam, and S. Park, “Measurement of flow direction and velocity using a micromachined flow sensor,” Sens. Actuators A 114, 312–318 (2004).
[CrossRef]

G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).

H. Ernst, A. Jachimowicz, and G. A. Urban, “High resolution flow characterization in bio-MEMS,” Sens. Actuators A 100, 54–62 (2002).
[CrossRef]

S. C. Roh, Y. M. Choi, and S. Y. Kim, “Sensitivity enhancement of a silicon micro-machined thermal flow sensor,” Sens. Actuators A 128, 1–6 (2006).
[CrossRef]

A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012).
[CrossRef]

G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007).
[CrossRef]

C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011).
[CrossRef]

Sens. Actuators B

M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007).
[CrossRef]

S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003).
[CrossRef]

R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001).
[CrossRef]

Sensors

Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing microcantilever structure,” Sensors 7, 2389–2401 (2007).
[CrossRef]

Other

J. A. Stone and J. H. Zimmerman, “Index of Refraction of Air,” http://emtoolbox.nist.gov/Wavelength/Ciddor.asp .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic view of the airflow sensor.

Fig. 2.
Fig. 2.

Simulation region and mesh geometry.

Fig. 3.
Fig. 3.

Velocity magnitude distribution in the xz plane for y=2mm, calculated for an input airflow centerline velocity of 1.19m/s.

Fig. 4.
Fig. 4.

Pressure distribution (Pa) and velocity streamlines across the cantilever in close view (zoomed view) inside the channel for input airflow centerline velocity of 1.19m/s.

Fig. 5.
Fig. 5.

Pressure on the cantilever front and back surfaces versus input airflow velocity.

Fig. 6.
Fig. 6.

Fabrication process of the cantilever. (a) SiO2 substrate was cleaned by 2-propanol, pure acetone, and dionized water. (b) Copper was coated by PVD method. (c) A 7.5 μm thickness Ma-P 1275 was spun coated on copper layer and baked. (d) Photolithography was done for patterning cantilever on Ma-P 1275. (e) Pattern of cantilever on Ma-P 1275 was developed in Ma-P 1275 developer solution. (f) Copper layer was etched in FeCl3 acid. (g) Ma-P 1275 was cleaned from the surface of the cantilever with pure acetone.

Fig. 7.
Fig. 7.

3D schematic view of the fabricated cantilever.

Fig. 8.
Fig. 8.

Fabrication process of the base. (a) SiO2 substrate was cleaned with 2-propanol, pure acetone, and dionized water. (b) A 25 μm thick layer of SU-8 was spun on SiO2 substrate. (c) Photolithography was done for patterning of the base. (d) A 40 μm thick layer of SU-8 was spun. (e) Photolithography was done. (f) The unexposed region was developed in SU-8 developer solution [the (d) and (e) steps were repeated seven times].

Fig. 9.
Fig. 9.

3D schematic view of the fabricated base.

Fig. 10.
Fig. 10.

3D schematic view of the cantilever connected to the base.

Fig. 11.
Fig. 11.

Top view photograph of the fabricated sensor chip.

Fig. 12.
Fig. 12.

(a) Schematic photo from the dimensions of the channel and flat rectangular pit (shadow zones should be ablated by laser). (b) A photograph of the channel and flat rectangular pit fabricated by CO2 laser on the Plexiglas. (c) A photograph of the final packaged sensor.

Fig. 13.
Fig. 13.

Schematic view of the experimental setup.

Fig. 14.
Fig. 14.

(a) Interferometric fringes at 10(l/h) input airflow rate. (b) Shift of interferometric fringes for one peak at input airflow rates of 10, 20, 30, 40, 50, 60, and 70(l/h).

Fig. 15.
Fig. 15.

Linear relation between the airflow rate and fringe shift.

Fig. 16.
Fig. 16.

Experimental results for the deflection of cantilever’s tip versus input airflow rate.

Tables (1)

Tables Icon

Table 1. Parameters for Simulation of Cantilever’s Behavior in Airflow Channel (Standard Conditions of 20°C and 1 atm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R=R1+R22R1R2cos(4πndλ0+2φ0),
nd=λ1λ22(λ1λ2),

Metrics