Abstract

A combined Brillouin gain and loss process has been proposed in a polarization maintaining optical fiber to realize all-optical NAND/NOT/AND/OR logic gates in the frequency domain. A model describing the interaction of a Stokes, anti-Stokes, and continuous wave and two acoustic waves inside a fiber, ranging in length from 350–2300 m, was used to theoretically model the gates. Through the optimization of the pump depletion and gain saturation in the combined gain and loss process, switching contrasts of 20%–83% have been simulated for different configurations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
    [CrossRef]
  2. T. Chattopadhyay, “Optical reversible programmable Boolean logic unit,” Appl. Opt. 51, 5266–5271 (2012).
    [CrossRef]
  3. M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
    [CrossRef]
  4. J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
    [CrossRef]
  5. Y. Wu, T. Shih, and M. Chen, “New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer,” Opt. Express 16, 248–257 (2008).
    [CrossRef]
  6. M. Nazari and M. Haghparast, “Novel design of all-optical reversible logic gate using Mach–Zehnder interferometer in the field of nanotechnology,” Australian J. Basic Appl. Sci. 5, 923–929 (2011).
    [CrossRef]
  7. T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
    [CrossRef]
  8. Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” Photon. Tech. Lett. 18, 1341–1343 (2006).
    [CrossRef]
  9. S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
    [CrossRef]
  10. D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
    [CrossRef]
  11. C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” J. Opt. Fiber Comm. Reports 2, 171–208 (2004).
    [CrossRef]
  12. X. Ye, P. Ye, and M. Zhang, “All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer,” Opt. Fiber Technol. 12, 312–316 (2006).
    [CrossRef]
  13. T. Chattopadhyay, “All-optical programmable Boolean logic unit using SOA-MZI switch,” IET Optoelectronics 5, 270–280(2011).
    [CrossRef]
  14. K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417–426 (1996).
    [CrossRef]
  15. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392–3399 (2006).
    [CrossRef]
  16. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40  Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711–1713 (2006).
    [CrossRef]
  17. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541–543 (2007).
    [CrossRef]
  18. Z. Y. Shen and L. L. Wu, “Reconfigurable optical logic unit with terahertz optical asymmetric demultiplexer and electro-optic switches,” Appl. Opt. 47, 3737–3742 (2008).
    [CrossRef]
  19. T. Chattopadhyay, “Eliminating the additional input beam in all-optical XOR gate using terahertz optical asymmetric demultiplexer (TOAD) based interferometer: a theoretical analysis,” Optik International J. Light Electron. Opt. 122, 1486–1491 (2011).
    [CrossRef]
  20. T. Chattopadhyay, “All-optical terahertz optical asymmetric demultiplexer (TOAD) based binary comparator: a proposal,” J. Nonlinear Opt. Phys. Mater. 18, 471–480 (2009).
    [CrossRef]
  21. T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. 17, 558–567 (2011).
    [CrossRef]
  22. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986).
    [CrossRef]
  23. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26, 2720–2725 (1987).
    [CrossRef]
  24. T. Chattopadhyay and T. Sarkar, “All-optical by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion,” Opt. Laser Technol. 44, 1722–1728 (2012).
    [CrossRef]
  25. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
    [CrossRef]
  26. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.
  27. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680(2001).
    [CrossRef]
  28. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
    [CrossRef]
  29. R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron. Lett. 18, 1036–1038 (1982).
    [CrossRef]
  30. W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5, 082503 (2012).
    [CrossRef]
  31. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
    [CrossRef]
  32. W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007).
    [CrossRef]
  33. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
    [CrossRef]
  34. R. Boyd, Nonlinear Optics (Academic, 1992).
  35. L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
    [CrossRef]
  36. Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” J. Lightwave Technol. 28, 2621–2626 (2010).
    [CrossRef]
  37. A. Kumar, Switching Theory and Logic Design (PHI Learning Private Limited, 2008).
  38. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [CrossRef]
  39. S. H. Larsen, M. E. V. Pedersen, L. Gruner-Nielsen, M. F. Yan, E. M. Monberg, P. W. Wisk, and K. Rottwitt, “Polarization maintaining higher order mode fiber module with anomalous dispersion at 1 μm,” Opt. Lett. 37, 4170–4172 (2012).
    [CrossRef]
  40. M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002).
    [CrossRef]
  41. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
    [CrossRef]
  42. Y. Miyoshi, R. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16, 2570–2577 (2008).
    [CrossRef]

2012 (5)

T. Chattopadhyay, “Optical reversible programmable Boolean logic unit,” Appl. Opt. 51, 5266–5271 (2012).
[CrossRef]

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
[CrossRef]

T. Chattopadhyay and T. Sarkar, “All-optical by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion,” Opt. Laser Technol. 44, 1722–1728 (2012).
[CrossRef]

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5, 082503 (2012).
[CrossRef]

S. H. Larsen, M. E. V. Pedersen, L. Gruner-Nielsen, M. F. Yan, E. M. Monberg, P. W. Wisk, and K. Rottwitt, “Polarization maintaining higher order mode fiber module with anomalous dispersion at 1 μm,” Opt. Lett. 37, 4170–4172 (2012).
[CrossRef]

2011 (6)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. 17, 558–567 (2011).
[CrossRef]

T. Chattopadhyay, “Eliminating the additional input beam in all-optical XOR gate using terahertz optical asymmetric demultiplexer (TOAD) based interferometer: a theoretical analysis,” Optik International J. Light Electron. Opt. 122, 1486–1491 (2011).
[CrossRef]

T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
[CrossRef]

M. Nazari and M. Haghparast, “Novel design of all-optical reversible logic gate using Mach–Zehnder interferometer in the field of nanotechnology,” Australian J. Basic Appl. Sci. 5, 923–929 (2011).
[CrossRef]

T. Chattopadhyay, “All-optical programmable Boolean logic unit using SOA-MZI switch,” IET Optoelectronics 5, 270–280(2011).
[CrossRef]

2010 (2)

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
[CrossRef]

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” J. Lightwave Technol. 28, 2621–2626 (2010).
[CrossRef]

2009 (2)

M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
[CrossRef]

T. Chattopadhyay, “All-optical terahertz optical asymmetric demultiplexer (TOAD) based binary comparator: a proposal,” J. Nonlinear Opt. Phys. Mater. 18, 471–480 (2009).
[CrossRef]

2008 (3)

2007 (2)

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541–543 (2007).
[CrossRef]

2006 (5)

2005 (3)

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

2004 (1)

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” J. Opt. Fiber Comm. Reports 2, 171–208 (2004).
[CrossRef]

2002 (1)

M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002).
[CrossRef]

2001 (1)

1998 (2)

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[CrossRef]

1996 (1)

1988 (1)

1987 (1)

1986 (1)

1982 (1)

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron. Lett. 18, 1036–1038 (1982).
[CrossRef]

1981 (1)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Awwal, A. A. S.

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” J. Lightwave Technol. 28, 2621–2626 (2010).
[CrossRef]

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

Birch, R. D.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron. Lett. 18, 1036–1038 (1982).
[CrossRef]

Bogoni, A.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear Optics (Academic, 1992).

Byun, Y. T.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

Chang, T. G.

Chattopadhyay, T.

T. Chattopadhyay, “Optical reversible programmable Boolean logic unit,” Appl. Opt. 51, 5266–5271 (2012).
[CrossRef]

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
[CrossRef]

T. Chattopadhyay and T. Sarkar, “All-optical by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion,” Opt. Laser Technol. 44, 1722–1728 (2012).
[CrossRef]

T. Chattopadhyay, “All-optical programmable Boolean logic unit using SOA-MZI switch,” IET Optoelectronics 5, 270–280(2011).
[CrossRef]

T. Chattopadhyay, “Optical programmable Boolean logic unit,” Appl. Opt. 50, 6049–6056 (2011).
[CrossRef]

T. Chattopadhyay, “Eliminating the additional input beam in all-optical XOR gate using terahertz optical asymmetric demultiplexer (TOAD) based interferometer: a theoretical analysis,” Optik International J. Light Electron. Opt. 122, 1486–1491 (2011).
[CrossRef]

T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. 17, 558–567 (2011).
[CrossRef]

T. Chattopadhyay, “All-optical terahertz optical asymmetric demultiplexer (TOAD) based binary comparator: a proposal,” J. Nonlinear Opt. Phys. Mater. 18, 471–480 (2009).
[CrossRef]

Chen, J.

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5, 082503 (2012).
[CrossRef]

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” J. Lightwave Technol. 28, 2621–2626 (2010).
[CrossRef]

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

Chen, M.

Cherri, A. K.

Christen, L.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Danziger, Y.

M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002).
[CrossRef]

Dong, Y.

Doran, N. J.

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Fetterman, M. R.

M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
[CrossRef]

Fujita, M.

Ghelfi, P.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Glesk, I.

Gruner-Nielsen, L.

Haghparast, M.

M. Nazari and M. Haghparast, “Novel design of all-optical reversible logic gate using Mach–Zehnder interferometer in the field of nanotechnology,” Australian J. Basic Appl. Sci. 5, 923–929 (2011).
[CrossRef]

Han, S. K.

He, Z.

Herman, E.

M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002).
[CrossRef]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Hotate, K.

Ikeda, R.

Inoue, T.

Jeon, Y. M.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

Jin, C.

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5, 082503 (2012).
[CrossRef]

Kang, J. M.

Kang, K. I.

Karim, M. A.

Kawanishi, S.

Kelly, T.

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[CrossRef]

Kim, J. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

Kim, J. Y.

Kim, S. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

Kim, T. Y.

Kishi, M.

Kitayama, K.

Kozhekin, A.

M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002).
[CrossRef]

Kubota, H.

Kumar, A.

A. Kumar, Switching Theory and Logic Design (PHI Learning Private Limited, 2008).

Larsen, S. H.

Lee, S.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

Li, G.

Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” Photon. Tech. Lett. 18, 1341–1343 (2006).
[CrossRef]

Li, X.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
[CrossRef]

Li, Y.

Li, Z.

Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” Photon. Tech. Lett. 18, 1341–1343 (2006).
[CrossRef]

Liu, J.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
[CrossRef]

Lohmann, A. W.

Ludwig, R.

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” J. Opt. Fiber Comm. Reports 2, 171–208 (2004).
[CrossRef]

Luo, T.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Marcenac, D.

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[CrossRef]

Meloni, G.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Miyoshi, Y.

Monberg, E. M.

Namiki, S.

Nazari, M.

M. Nazari and M. Haghparast, “Novel design of all-optical reversible logic gate using Mach–Zehnder interferometer in the field of nanotechnology,” Australian J. Basic Appl. Sci. 5, 923–929 (2011).
[CrossRef]

Nesset, D.

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[CrossRef]

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Pan, Z.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Payne, D. N.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron. Lett. 18, 1036–1038 (1982).
[CrossRef]

Pedersen, M. E. V.

Ponzini, F.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Poti, L.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Proietti, R.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Prucnal, P. R.

Rottwitt, K.

Sarkar, T.

T. Chattopadhyay and T. Sarkar, “All-optical by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion,” Opt. Laser Technol. 44, 1722–1728 (2012).
[CrossRef]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Schubert, C.

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” J. Opt. Fiber Comm. Reports 2, 171–208 (2004).
[CrossRef]

Shen, Z. Y.

Shih, T.

Song, K. Y.

Su, X.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
[CrossRef]

Sun, J.

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541–543 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40  Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711–1713 (2006).
[CrossRef]

Sun, Q.

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541–543 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40  Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711–1713 (2006).
[CrossRef]

Suzuki, K.

Tanaka, M.

Tobioka, H.

Tur, M.

M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002).
[CrossRef]

Varnham, M. P.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron. Lett. 18, 1036–1038 (1982).
[CrossRef]

Wang, J.

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541–543 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40  Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711–1713 (2006).
[CrossRef]

Wang, Y.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Weber, H.-G.

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” J. Opt. Fiber Comm. Reports 2, 171–208 (2004).
[CrossRef]

Willner, A. E.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Wisk, P. W.

Woo, D. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

Wood, D.

Wu, L. L.

Wu, Y.

Yan, L.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Yan, M. F.

Yang, J.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
[CrossRef]

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
[CrossRef]

Ye, P.

X. Ye, P. Ye, and M. Zhang, “All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer,” Opt. Fiber Technol. 12, 312–316 (2006).
[CrossRef]

Ye, X.

X. Ye, P. Ye, and M. Zhang, “All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer,” Opt. Fiber Technol. 12, 312–316 (2006).
[CrossRef]

Yu, B. G.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

Yu, C.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Zhang, M.

X. Ye, P. Ye, and M. Zhang, “All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer,” Opt. Fiber Technol. 12, 312–316 (2006).
[CrossRef]

Zou, W.

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5, 082503 (2012).
[CrossRef]

W. Zou, Z. He, M. Kishi, and K. Hotate, “Stimulated Brillouin scattering and its dependences on strain and temperature in a high-delta optical fiber with F-doped depressed inner cladding,” Opt. Lett. 32, 600–602 (2007).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Express (1)

W. Zou, C. Jin, and J. Chen, “Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis,” Appl. Phys. Express 5, 082503 (2012).
[CrossRef]

Australian J. Basic Appl. Sci. (1)

M. Nazari and M. Haghparast, “Novel design of all-optical reversible logic gate using Mach–Zehnder interferometer in the field of nanotechnology,” Australian J. Basic Appl. Sci. 5, 923–929 (2011).
[CrossRef]

Electron. Lett. (4)

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, Y. M. Jeon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027–1028 (2005).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarization-maintaining fibers using gas-phase etching,” Electron. Lett. 18, 1036–1038 (1982).
[CrossRef]

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

IEEE Commun. Mag. (1)

D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities,” IEEE Commun. Mag. 36, 56–61 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Chattopadhyay, “All-optical modified Fredkin gate,” IEEE J. Sel. Top. Quantum Electron. 18, 585–592 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation,” IEEE Photon. Technol. Lett. 19, 541–543 (2007).
[CrossRef]

M. Tur, E. Herman, A. Kozhekin, and Y. Danziger, “Stimulated Brillouin scattering in high-order mode fibers employed in dispersion management modules,” IEEE Photon. Technol. Lett. 14, 1282–1284 (2002).
[CrossRef]

IET Optoelectronics (1)

T. Chattopadhyay, “All-optical programmable Boolean logic unit using SOA-MZI switch,” IET Optoelectronics 5, 270–280(2011).
[CrossRef]

J. Lightwave Technol. (2)

J. Nonlinear Opt. Phys. Mater. (1)

T. Chattopadhyay, “All-optical terahertz optical asymmetric demultiplexer (TOAD) based binary comparator: a proposal,” J. Nonlinear Opt. Phys. Mater. 18, 471–480 (2009).
[CrossRef]

J. Opt. Fiber Comm. Reports (1)

C. Schubert, R. Ludwig, and H.-G. Weber, “High-speed optical signal processing using semiconductor optical amplifiers,” J. Opt. Fiber Comm. Reports 2, 171–208 (2004).
[CrossRef]

Opt. Commun. (1)

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (2)

T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. 17, 558–567 (2011).
[CrossRef]

X. Ye, P. Ye, and M. Zhang, “All-optical NAND gate using integrated SOA-based Mach–Zehnder interferometer,” Opt. Fiber Technol. 12, 312–316 (2006).
[CrossRef]

Opt. Laser Technol. (2)

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 43, 927–933 (2010).
[CrossRef]

T. Chattopadhyay and T. Sarkar, “All-optical by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion,” Opt. Laser Technol. 44, 1722–1728 (2012).
[CrossRef]

Opt. Lett. (5)

Optik International J. Light Electron. Opt. (1)

T. Chattopadhyay, “Eliminating the additional input beam in all-optical XOR gate using terahertz optical asymmetric demultiplexer (TOAD) based interferometer: a theoretical analysis,” Optik International J. Light Electron. Opt. 122, 1486–1491 (2011).
[CrossRef]

Photon. Tech. Lett. (2)

Z. Li and G. Li, “Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” Photon. Tech. Lett. 18, 1341–1343 (2006).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” Photon. Tech. Lett. 17, 1232–1234 (2005).
[CrossRef]

Sensors (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011).
[CrossRef]

Other (3)

R. Boyd, Nonlinear Optics (Academic, 1992).

A. Kumar, Switching Theory and Logic Design (PHI Learning Private Limited, 2008).

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” Proc. Conf. Lasers Electro-Optics (2004), pp. 3–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic arrangement of SBS in a PMF of length L CW and pulse configuration: A1—continuous wave, A2—Stokes wave, A3—anti-Stokes wave.

Fig. 2.
Fig. 2.

ASW power distribution inside the optical fiber (a) gain and loss regime: P20=10mW and (b) gain or loss regime: P20=0mW n=1.48, γe=0.902, λ=1550nm, ρ0=2.21g/cm3, v=5616m/s, ΓB=0.1GHz, α=0.2dB/km, L=350m, P10=10mW, P30=10mW.

Fig. 3.
Fig. 3.

NAND gate switching contrast plots (a) configuration I: low threshold: 54.7%, high threshold: 74.8%, tolerance: 20.6%. (b) Configuration II: low threshold: 35.8%, high threshold: 87.8%, tolerance: 52.7%. (c) Configuration III: low threshold: 5.9%, high threshold: 87.7%, tolerance: 82.8%.

Fig. 4.
Fig. 4.

NOT gate switching contrast plots (a) configuration IV: low threshold: 38.9%, high threshold: 91.1%, tolerance: 52.9%. (b) Configuration V: low threshold: 13.3%, high threshold: 90.0%, tolerance: 77.6%.

Fig. 5.
Fig. 5.

Schematic of configuration VI: AND gate.

Fig. 6.
Fig. 6.

AND gate switching contrast plots (a) configuration VI: low threshold: 40.2%, high threshold: 83.1%, tolerance: 42.3%. (b) Configuration VII: low threshold: 16.1%, high threshold: 77.1%, tolerance: 61.8%.

Fig. 7.
Fig. 7.

Schematic of configuration VII: AND gate.

Fig. 8.
Fig. 8.

Schematic of configuration IX: OR gate.

Fig. 9.
Fig. 9.

OR gate switching contrast plot low threshold: 6.8%, high threshold: 88.9%, tolerance: 83.0%.

Fig. 10.
Fig. 10.

Output ASW power spectra (a) “0 0” input, (b) “0 1” input, (c) “1 0” input, and (d) “1 1” input.

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

dA1dz=iω1γe2ncρ0ρ1A2+iω1γe2ncρ0ρ2*A312αA1,
dA2dz=iω2γe2ncρ0ρ1*A112αA2,
dA3dz=iω3γe2ncρ0ρ2A112αA3,
(ΩB2Ω12iΩ1ΓB)ρ1=γeq124πA1A2*,
(ΩB2Ω22iΩ2ΓB)ρ2=γeq224πA3A1*,
|A1(L)|2=A102;|A2(0)|2=A202|A3(0)|2=A302,
dY1dl=β1Y1Y2β2Y1Y3+εY1,
dY2dl=β3Y1Y2εY2,
dY3dl=β4Y1Y3εY3,
Y4=β5Y1Y2,
Y5=β6Y1Y3,
Y1(1)=1;Y2(0)=1;Y3(0)=1.
β1=2γe2k3LP20πr2n3cρ0Ω1ΓB·11+ξ12,
β2=2γe2k3LP30πr2n3cρ0Ω2ΓB·11+ξ22,
β3=2γe2k3LP10πr2n3cρ0Ω1ΓB·11+ξ12,
β4=2γe2k3LP10πr2n3cρ0Ω2ΓB·11+ξ22,
β5=(2γek2πr2ncρ0Ω1ΓB)2·11+ξ12·P10P20,
β6=(2γek2πr2ncρ0Ω2ΓB)2·11+ξ22·P10P30,
ξ1=ΩB2Ω12Ω1ΓBandξ2=ΩB2Ω22Ω2ΓB.

Metrics