Abstract

Sandstone is an important cultural heritage material, in both architectural and natural settings, such as neolithic rock art panels. The majority of deterioration effects in porous materials such as sandstone are influenced by the presence and movement of water through the material. The presence of water within the porous network of a material results in changes in the optical coherence tomography signal intensity that can be used to monitor the wetting front of water penetration of dry porous materials at various depths. The technique is able to detect wetting front velocities from 1cms1 to 106cms1, covering the full range of hydraulic conductivities likely to occur in natural sandstones from pervious to impervious.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Doehne and C. A. Price, Stone Conservation an Overview of Current Research (Getty Conservation Institute, 2010).
  2. H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010).
    [CrossRef]
  3. B. Fitzner, K. Heinrichs, and D. La Bouchardiere, “Weathering damage on Pharonic sandstone monuments in Luxor-Egypt,” Build. Environ. 38, 1089–1103 (2003).
    [CrossRef]
  4. A. V. Turkington and T. R. Paradise, “Sandstone weathering: a century of research and innovation,” Geomorphology 67, 229–253 (2005).
    [CrossRef]
  5. R. A. L. Wray, “A global review of solutional weathering forms on quartz sandstones,” Earth-Sci. Rev. 42, 137–160 (1997).
    [CrossRef]
  6. Th. Warscheid and J. Braams, “Biodeterioration of stone: a review,” Int. Biodeterior. Biodegrad. 46, 343–368 (2000).
    [CrossRef]
  7. E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
    [CrossRef]
  8. O. Sass and H. A. Viles, “Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK,” J. Appl. Geophys. 70, 72–83 (2010).
    [CrossRef]
  9. A. T. Watson and C. T. P. Chang, “Characterizing porous media with NMR methods,” Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997).
    [CrossRef]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  11. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).
  12. H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
    [CrossRef]
  13. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
    [CrossRef]
  14. P. Targowski and M. Iwanicka, “Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106, 265–277 (2012).
    [CrossRef]
  15. H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
    [CrossRef]
  16. URL: http://www.oct4art.eu .
  17. M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).
  18. S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010).
    [CrossRef]
  19. M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13, 021111 (2008).
    [CrossRef]
  20. M. G. Ghosn, E. F. Carbajal, and N. A. Befrui, “Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera,” J. Biomed. Opt. 13, 021110 (2008).
    [CrossRef]
  21. H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
    [CrossRef]
  22. A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  23. J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, 1972).
  24. A. J. Katz and A. H. Thompson, “Quantitative prediction of permeability in porous rock,” Phys. Rev. B 34, 8179–8181 (1986).
    [CrossRef]

2012 (1)

P. Targowski and M. Iwanicka, “Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106, 265–277 (2012).
[CrossRef]

2011 (1)

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

2010 (3)

O. Sass and H. A. Viles, “Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK,” J. Appl. Geophys. 70, 72–83 (2010).
[CrossRef]

H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010).
[CrossRef]

S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010).
[CrossRef]

2009 (1)

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

2008 (3)

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13, 021111 (2008).
[CrossRef]

M. G. Ghosn, E. F. Carbajal, and N. A. Befrui, “Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera,” J. Biomed. Opt. 13, 021110 (2008).
[CrossRef]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

2005 (2)

2004 (3)

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

2003 (1)

B. Fitzner, K. Heinrichs, and D. La Bouchardiere, “Weathering damage on Pharonic sandstone monuments in Luxor-Egypt,” Build. Environ. 38, 1089–1103 (2003).
[CrossRef]

2000 (1)

Th. Warscheid and J. Braams, “Biodeterioration of stone: a review,” Int. Biodeterior. Biodegrad. 46, 343–368 (2000).
[CrossRef]

1997 (2)

R. A. L. Wray, “A global review of solutional weathering forms on quartz sandstones,” Earth-Sci. Rev. 42, 137–160 (1997).
[CrossRef]

A. T. Watson and C. T. P. Chang, “Characterizing porous media with NMR methods,” Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1986 (1)

A. J. Katz and A. H. Thompson, “Quantitative prediction of permeability in porous rock,” Phys. Rev. B 34, 8179–8181 (1986).
[CrossRef]

Alonso, F. J.

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Bear, J.

J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, 1972).

Befrui, N. A.

M. G. Ghosn, E. F. Carbajal, and N. A. Befrui, “Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera,” J. Biomed. Opt. 13, 021110 (2008).
[CrossRef]

Braams, J.

Th. Warscheid and J. Braams, “Biodeterioration of stone: a review,” Int. Biodeterior. Biodegrad. 46, 343–368 (2000).
[CrossRef]

Buj, O.

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Carbajal, E. F.

M. G. Ghosn, E. F. Carbajal, and N. A. Befrui, “Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera,” J. Biomed. Opt. 13, 021110 (2008).
[CrossRef]

Carrizo, L.

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Chang, C. T. P.

A. T. Watson and C. T. P. Chang, “Characterizing porous media with NMR methods,” Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997).
[CrossRef]

Chang, G.

S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010).
[CrossRef]

Chang, S.

S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Cid, M.

Cucu, R.

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[CrossRef]

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Cultrone, G.

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Dobre, G.

Dobre, G. M.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Doehne, E.

E. Doehne and C. A. Price, Stone Conservation an Overview of Current Research (Getty Conservation Institute, 2010).

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fercher, A. F.

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fitzner, B.

B. Fitzner, K. Heinrichs, and D. La Bouchardiere, “Weathering damage on Pharonic sandstone monuments in Luxor-Egypt,” Build. Environ. 38, 1089–1103 (2003).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Flueraru, C.

S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Ghosn, M. G.

M. G. Ghosn, E. F. Carbajal, and N. A. Befrui, “Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera,” J. Biomed. Opt. 13, 021110 (2008).
[CrossRef]

Gisbert, J.

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Guo, Z.

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

He, Y.

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Heinrichs, K.

B. Fitzner, K. Heinrichs, and D. La Bouchardiere, “Weathering damage on Pharonic sandstone monuments in Luxor-Egypt,” Build. Environ. 38, 1089–1103 (2003).
[CrossRef]

Hizenberger, C. K.

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Hsu, I. J.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hughes, M.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Iwanicka, M.

P. Targowski and M. Iwanicka, “Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106, 265–277 (2012).
[CrossRef]

Jackson, D. A.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Katz, A. J.

A. J. Katz and A. H. Thompson, “Quantitative prediction of permeability in porous rock,” Phys. Rev. B 34, 8179–8181 (1986).
[CrossRef]

Kinnunen, M.

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13, 021111 (2008).
[CrossRef]

Kowalczyk, A.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

La Bouchardiere, D.

B. Fitzner, K. Heinrichs, and D. La Bouchardiere, “Weathering damage on Pharonic sandstone monuments in Luxor-Egypt,” Build. Environ. 38, 1089–1103 (2003).
[CrossRef]

Leisen, H.

H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010).
[CrossRef]

Liang, H.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[CrossRef]

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, S.

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

Lu, C. W.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).

Mao, Y.

S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010).
[CrossRef]

Molina, E.

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Myllylä, R.

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13, 021111 (2008).
[CrossRef]

Pannell, C.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Paradise, T. R.

A. V. Turkington and T. R. Paradise, “Sandstone weathering: a century of research and innovation,” Geomorphology 67, 229–253 (2005).
[CrossRef]

Pedro, J.

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[CrossRef]

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Peric, B.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Pfefferkorn, S.

H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010).
[CrossRef]

Plehwe-Leisen, E.

H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010).
[CrossRef]

Podoleanu, A.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[CrossRef]

Podoleanu, A. G.

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Price, C. A.

E. Doehne and C. A. Price, Stone Conservation an Overview of Current Research (Getty Conservation Institute, 2010).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Roehrs, S.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Rouba, B.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Sass, O.

O. Sass and H. A. Viles, “Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK,” J. Appl. Geophys. 70, 72–83 (2010).
[CrossRef]

Saunders, D.

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[CrossRef]

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sebastian, E.

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Siedel, H.

H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010).
[CrossRef]

Spring, M.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Targowski, P.

P. Targowski and M. Iwanicka, “Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106, 265–277 (2012).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Thompson, A. H.

A. J. Katz and A. H. Thompson, “Quantitative prediction of permeability in porous rock,” Phys. Rev. B 34, 8179–8181 (1986).
[CrossRef]

Turkington, A. V.

A. V. Turkington and T. R. Paradise, “Sandstone weathering: a century of research and innovation,” Geomorphology 67, 229–253 (2005).
[CrossRef]

Vainio, S.

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13, 021111 (2008).
[CrossRef]

Viles, H. A.

O. Sass and H. A. Viles, “Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK,” J. Appl. Geophys. 70, 72–83 (2010).
[CrossRef]

Wang, L.

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

Warscheid, Th.

Th. Warscheid and J. Braams, “Biodeterioration of stone: a review,” Int. Biodeterior. Biodegrad. 46, 343–368 (2000).
[CrossRef]

Watson, A. T.

A. T. Watson and C. T. P. Chang, “Characterizing porous media with NMR methods,” Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997).
[CrossRef]

Wojtkowski, M.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Wray, R. A. L.

R. A. L. Wray, “A global review of solutional weathering forms on quartz sandstones,” Earth-Sci. Rev. 42, 137–160 (1997).
[CrossRef]

Xiong, H.

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

Yang, C. C.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).

Yang, M. L.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).

Zeng, C.

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

Appl. Phys. A (1)

P. Targowski and M. Iwanicka, “Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A 106, 265–277 (2012).
[CrossRef]

Archaeometry (1)

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171–182 (2004).

Build. Environ. (1)

B. Fitzner, K. Heinrichs, and D. La Bouchardiere, “Weathering damage on Pharonic sandstone monuments in Luxor-Egypt,” Build. Environ. 38, 1089–1103 (2003).
[CrossRef]

Earth-Sci. Rev. (1)

R. A. L. Wray, “A global review of solutional weathering forms on quartz sandstones,” Earth-Sci. Rev. 42, 137–160 (1997).
[CrossRef]

Eng. Geol. (2)

H. Siedel, S. Pfefferkorn, E. Plehwe-Leisen, and H. Leisen, “Sandstone weathering in tropical climate: results for low-destructive investigations at the temple of Angkor Wat, Cambodia,” Eng. Geol. 115, 182–192 (2010).
[CrossRef]

E. Molina, G. Cultrone, E. Sebastian, F. J. Alonso, L. Carrizo, J. Gisbert, and O. Buj, “The pore system of sedimentary rocks as a key factor in the durability of building materials,” Eng. Geol. 118, 110–121 (2011).
[CrossRef]

Geomorphology (1)

A. V. Turkington and T. R. Paradise, “Sandstone weathering: a century of research and innovation,” Geomorphology 67, 229–253 (2005).
[CrossRef]

Int. Biodeterior. Biodegrad. (1)

Th. Warscheid and J. Braams, “Biodeterioration of stone: a review,” Int. Biodeterior. Biodegrad. 46, 343–368 (2000).
[CrossRef]

J. Appl. Geophys. (1)

O. Sass and H. A. Viles, “Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK,” J. Appl. Geophys. 70, 72–83 (2010).
[CrossRef]

J. Biomed. Opt. (3)

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13, 021111 (2008).
[CrossRef]

M. G. Ghosn, E. F. Carbajal, and N. A. Befrui, “Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera,” J. Biomed. Opt. 13, 021110 (2008).
[CrossRef]

H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, and S. Liu, “Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice,” J. Biomed. Opt. 14, 024029 (2009).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Eng. (1)

S. Chang, Y. Mao, G. Chang, and C. Flueraru, “Jade detection and analysis based on optical coherence tomography images,” Opt. Eng. 49, 063602 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

A. J. Katz and A. H. Thompson, “Quantitative prediction of permeability in porous rock,” Phys. Rev. B 34, 8179–8181 (1986).
[CrossRef]

Proc. SPIE (2)

H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, “Application of OCT to examination of easel paintings,” Proc. SPIE 5502, 378 (2004).
[CrossRef]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeology and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Prog. Nucl. Magn. Reson. Spectrosc. (1)

A. T. Watson and C. T. P. Chang, “Characterizing porous media with NMR methods,” Prog. Nucl. Magn. Reson. Spectrosc. 31, 343–386 (1997).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Stud. Conserv. (1)

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to non-destructive examination of museum objects,” Stud. Conserv. 49, 107–114 (2004).

Other (3)

E. Doehne and C. A. Price, Stone Conservation an Overview of Current Research (Getty Conservation Institute, 2010).

URL: http://www.oct4art.eu .

J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, 1972).

Supplementary Material (2)

» Media 1: AVI (3460 KB)     
» Media 2: AVI (3460 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of measurement procedure: water is added 10 mm away from the 10 mm lateral range of the scan to allow water to penetrate through the depth of the sample before spreading laterally by capillary action.

Fig. 2.
Fig. 2.

OCT virtual cross sections of WM sandstone sample when (a) dry and (b) wet (see Media 1 and Media 2).

Fig. 3.
Fig. 3.

Stack of OCT virtual cross sections as a function of time displayed as a (x, z, time) image cube from which depth “slices” (x, time) can be extracted.

Fig. 4.
Fig. 4.

Sintered disk grade 3 (5–15 μm pore size): (a) pixel intensity values averaged across the 10 mm cross section when dry (solid blue line) and wet (dotted green line); signal intensity values at depths of (b) 400μm, (c) 700μm, and (d) 1000μm across the lateral range of the scan over time. The OCT signals are in log scales.

Fig. 5.
Fig. 5.

Sintered disk grade 4 (1–2 μm pore size): (a) pixel intensity values averaged across the 10 mm cross section when dry (solid blue line) and wet (dotted green line), signal intensity values at depths of (b) 400μm, (c) 700μm, and (d) 1000μm across the lateral range of the scan over time. The OCT signals are in log scales.

Fig. 6.
Fig. 6.

Position of the wetting front over time for sintered disks with 5–15 μm pore size range (black lines) and 1–2 μm pore size range (green lines) shown at depths of 400μm (solid line), 700μm (dashed line), and 1000μm (dotted line) into the sample.

Fig. 7.
Fig. 7.

WM sandstone sample: (a) pixel intensity values averaged across the 10 mm cross section when dry (solid blue line) and wet (dotted green line), signal intensity values at depths of (b) 400μm, (c) 700μm, and (d) 1000μm across the lateral range of the scan over time. The OCT signals are in log scales.

Fig. 8.
Fig. 8.

CP sandstone sample: (a) pixel intensity values averaged across the 10 mm cross section when dry (solid blue line) and wet (dotted green line), signal intensity values at depths of (b) 400μm, (c) 700μm, and (d) 1000μm across the lateral range of the scan over time. The OCT signals are in log scales.

Fig. 9.
Fig. 9.

Position of the wetting front over time for WM (black lines) and CP (green lines) sandstone samples shown at depths of 400μm (solid line), 700μm (dashed line), and 1000μm (dotted line) into the sample.

Metrics