K. Kato, Y. Taniguchi, T. Inoue, and K. Kadota, “Novel MRC algorithms using GPGPU,” Proc. SPIE 8441, 84410R (2012).

[CrossRef]

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

X. Ma, S. Jiang, and A. Zakhor, “A cost-driven fracture heuristics to minimize sliver length,” Proc. SPIE 7973, 79732O (2011).

[CrossRef]

J. Yu and P. Yu, “Choosing objective functions for inverse lithography patterning,” Proc. SPIE 7973, 79731N (2011).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

X. Ma and Y. Li, “Resolution enhancement optimization methods in optical lithography with improved manufacturability,” J. Micro/Nanolith. MEMS MOEMS 10, 023009 (2011).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

J. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express 18, 23331–23342 (2010).

[CrossRef]

Y. Shen, N. Wong, and E. Y. Lam, “Aberration-aware robust mask design with level-set-based inverse lithography,” Proc. SPIE 7748, 77481U (2010).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

N. Jia, A. K. Wang, and E. Y. Lam, “Regularization of inverse photomask synthesis to enhance manufacturability,” Proc. SPIE 7520, 75200E (2009).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

Y. Zhou and Y. Li, “Optimization of double bottom antireflective coating for hyper numerical aperture lithography,” Acta Opt. Sin. 28, 472–477 (2008).

[CrossRef]

N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” Proc. SPIE 7140, 71401W (2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Microlith. Microfab. Microsyst. 5, 043002 (2006).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

Y. Granik, “Solving inverse problems of optical microlithography,” Proc. SPIE 5754, 506–526 (2004).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed linear integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

X. Ma and G. R. Arce, Computational Lithography, 1st ed.(Wiley, 2010).

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).

[CrossRef]

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

J. Goodman, Introduction to Fourier Optics, 2nd ed.(McGraw-Hill, 1996).

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Microlith. Microfab. Microsyst. 5, 043002 (2006).

[CrossRef]

Y. Granik, “Solving inverse problems of optical microlithography,” Proc. SPIE 5754, 506–526 (2004).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

K. Kato, Y. Taniguchi, T. Inoue, and K. Kadota, “Novel MRC algorithms using GPGPU,” Proc. SPIE 8441, 84410R (2012).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

N. Jia, A. K. Wang, and E. Y. Lam, “Regularization of inverse photomask synthesis to enhance manufacturability,” Proc. SPIE 7520, 75200E (2009).

[CrossRef]

N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” Proc. SPIE 7140, 71401W (2008).

[CrossRef]

X. Ma, S. Jiang, and A. Zakhor, “A cost-driven fracture heuristics to minimize sliver length,” Proc. SPIE 7973, 79732O (2011).

[CrossRef]

K. Kato, Y. Taniguchi, T. Inoue, and K. Kadota, “Novel MRC algorithms using GPGPU,” Proc. SPIE 8441, 84410R (2012).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

K. Kato, Y. Taniguchi, T. Inoue, and K. Kadota, “Novel MRC algorithms using GPGPU,” Proc. SPIE 8441, 84410R (2012).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

Y. Shen, N. Wong, and E. Y. Lam, “Aberration-aware robust mask design with level-set-based inverse lithography,” Proc. SPIE 7748, 77481U (2010).

[CrossRef]

N. Jia, A. K. Wang, and E. Y. Lam, “Regularization of inverse photomask synthesis to enhance manufacturability,” Proc. SPIE 7520, 75200E (2009).

[CrossRef]

N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” Proc. SPIE 7140, 71401W (2008).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed linear integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).

[CrossRef]

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).

[CrossRef]

X. Ma and Y. Li, “Resolution enhancement optimization methods in optical lithography with improved manufacturability,” J. Micro/Nanolith. MEMS MOEMS 10, 023009 (2011).

[CrossRef]

Y. Zhou and Y. Li, “Optimization of double bottom antireflective coating for hyper numerical aperture lithography,” Acta Opt. Sin. 28, 472–477 (2008).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).

[CrossRef]

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

X. Ma, S. Jiang, and A. Zakhor, “A cost-driven fracture heuristics to minimize sliver length,” Proc. SPIE 7973, 79732O (2011).

[CrossRef]

X. Ma and Y. Li, “Resolution enhancement optimization methods in optical lithography with improved manufacturability,” J. Micro/Nanolith. MEMS MOEMS 10, 023009 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

X. Ma and G. R. Arce, Computational Lithography, 1st ed.(Wiley, 2010).

A. Poonawala and P. Milanfar, “Double-exposure mask synthesis using inverse lithography,” J. Micro/Nanolithogr. MEMS MOEMS 6, 043001 (2007).

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

A. Poonawala and P. Milanfar, “Double-exposure mask synthesis using inverse lithography,” J. Micro/Nanolithogr. MEMS MOEMS 6, 043001 (2007).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed linear integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

Y. Shen, N. Wong, and E. Y. Lam, “Aberration-aware robust mask design with level-set-based inverse lithography,” Proc. SPIE 7748, 77481U (2010).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed linear integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

K. Kato, Y. Taniguchi, T. Inoue, and K. Kadota, “Novel MRC algorithms using GPGPU,” Proc. SPIE 8441, 84410R (2012).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

N. Jia, A. K. Wang, and E. Y. Lam, “Regularization of inverse photomask synthesis to enhance manufacturability,” Proc. SPIE 7520, 75200E (2009).

[CrossRef]

N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” Proc. SPIE 7140, 71401W (2008).

[CrossRef]

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

Y. Shen, N. Wong, and E. Y. Lam, “Aberration-aware robust mask design with level-set-based inverse lithography,” Proc. SPIE 7748, 77481U (2010).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

X. Ma, S. Jiang, and A. Zakhor, “A cost-driven fracture heuristics to minimize sliver length,” Proc. SPIE 7973, 79732O (2011).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

Y. Zhou and Y. Li, “Optimization of double bottom antireflective coating for hyper numerical aperture lithography,” Acta Opt. Sin. 28, 472–477 (2008).

[CrossRef]

Y. Zhou and Y. Li, “Optimization of double bottom antireflective coating for hyper numerical aperture lithography,” Acta Opt. Sin. 28, 472–477 (2008).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed linear integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

X. Ma and Y. Li, “Resolution enhancement optimization methods in optical lithography with improved manufacturability,” J. Micro/Nanolith. MEMS MOEMS 10, 023009 (2011).

[CrossRef]

A. Poonawala and P. Milanfar, “Double-exposure mask synthesis using inverse lithography,” J. Micro/Nanolithogr. MEMS MOEMS 6, 043001 (2007).

[CrossRef]

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Microlith. Microfab. Microsyst. 5, 043002 (2006).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).

[CrossRef]

X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

J. Yu and P. Yu, “Impacts of cost functions on inverse lithography patterning,” Opt. Express 18, 23331–23342 (2010).

[CrossRef]

J. Yu and P. Yu, “Choosing objective functions for inverse lithography patterning,” Proc. SPIE 7973, 79731N (2011).

[CrossRef]

B. Kim, S. S. Suh, S. G. Woo, H. Cho, G. Xiao, D. H. Son, D. Irby, D. Kim, and K. Baik, “Inverse lithography technology (ILT) mask manufacturability for full-chip device,” Proc. SPIE 7488, 748812 (2009).

[CrossRef]

Y. Ping, X. Li, S. Jang, D. Kwa, Y. Zhang, and R. Lugg, “Tolerance-based OPC and solution to MRC-constrained OPC,” Proc. SPIE 7973, 79732M (2011).

[CrossRef]

T. Cecil, C. Ashton, D. Irby, L. Luan, D. H. Son, G. Xiao, X. Zhou, D. Kim, and B. Gleason, “Enhancing fullchip ILT mask synthesis capability for IC manufacturability,” Proc. SPIE 7973, 79731C (2011).

[CrossRef]

K. Kato, Y. Taniguchi, T. Inoue, and K. Kadota, “Novel MRC algorithms using GPGPU,” Proc. SPIE 8441, 84410R (2012).

[CrossRef]

Y. Shen, N. Wong, and E. Y. Lam, “Aberration-aware robust mask design with level-set-based inverse lithography,” Proc. SPIE 7748, 77481U (2010).

[CrossRef]

N. Jia, A. K. Wang, and E. Y. Lam, “Regularization of inverse photomask synthesis to enhance manufacturability,” Proc. SPIE 7520, 75200E (2009).

[CrossRef]

X. Ma, S. Jiang, and A. Zakhor, “A cost-driven fracture heuristics to minimize sliver length,” Proc. SPIE 7973, 79732O (2011).

[CrossRef]

Y. Granik, “Solving inverse problems of optical microlithography,” Proc. SPIE 5754, 506–526 (2004).

[CrossRef]

N. Jia, A. K. Wong, and E. Y. Lam, “Robust mask design with defocus variation using inverse synthesis,” Proc. SPIE 7140, 71401W (2008).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

J. Goodman, Introduction to Fourier Optics, 2nd ed.(McGraw-Hill, 1996).

http://www.mentor.com/ .

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

X. Ma and G. R. Arce, Computational Lithography, 1st ed.(Wiley, 2010).