L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

A. Sakamoto, N. Tsuda, and J. Yamada, “Characteristic of self-coupling distance meter using VCSEL,” IEEJ Trans. EIS 126, 1454–1459 (2006).

[CrossRef]

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics,” J. Biomed. Opt. 8, 152–160 (2003).

[CrossRef]

F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41, 658–667 (2002).

[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).

[CrossRef]

U. Küchler and E. Platen, “Weak discrete time approximation of stochastic differential equations with time delay,” Math. Comput. Simul. 59, 497–507 (2002).

[CrossRef]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).

[CrossRef]

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).

[CrossRef]

M. Wang, “Fourier transform method for self-mixing interference signal analysis,” Opt. Laser Technol. 33, 409–416 (2001).

[CrossRef]

L. C. Godara, “Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations,” Proc. IEEE 85, 1195–1245 (1997).

[CrossRef]

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).

[CrossRef]

P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer–Rao bound,” IEEE Trans. Acoust. Speech Signal Process. 37, 720–741 (1989).

[CrossRef]

R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag. 34, 276–280(1986).

[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).

[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).

[CrossRef]

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, 2003).

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).

[CrossRef]

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, 2003).

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).

[CrossRef]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).

[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998).

[CrossRef]

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, 2003).

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).

[CrossRef]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).

[CrossRef]

S. Donati and S. Merlo, “Applications of diode laser feedback interferometry,” J. Opt. 29, 156–161 (1998).

[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).

[CrossRef]

L. C. Godara, “Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations,” Proc. IEEE 85, 1195–1245 (1997).

[CrossRef]

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).

[CrossRef]

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).

[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).

[CrossRef]

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics,” J. Biomed. Opt. 8, 152–160 (2003).

[CrossRef]

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).

[CrossRef]

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics,” J. Biomed. Opt. 8, 152–160 (2003).

[CrossRef]

S. M. Kay, Modern Spectral Estimation: Theory and Application (Prentice Hall, 1988).

R. Kliese and A. D. Rakic, “Spectral broadening caused by dynamic speckle in self-mixing velocimetry sensors,” Opt. Express 20, 18757–18771 (2012).

[CrossRef]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).

[CrossRef]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, 1999).

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).

[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).

[CrossRef]

U. Küchler and E. Platen, “Weak discrete time approximation of stochastic differential equations with time delay,” Math. Comput. Simul. 59, 497–507 (2002).

[CrossRef]

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).

[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).

[CrossRef]

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics,” J. Biomed. Opt. 8, 152–160 (2003).

[CrossRef]

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).

[CrossRef]

J. Tucker, Y. L. Lim, and A. D. Rakic, “Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser,” in Conference on Optoelectronic and Microelectronic Materials and Devices, M. Gal, ed. (IEEE, 2002), pp. 583–586.

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).

[CrossRef]

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).

[CrossRef]

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics,” J. Biomed. Opt. 8, 152–160 (2003).

[CrossRef]

S. Donati and S. Merlo, “Applications of diode laser feedback interferometry,” J. Opt. 29, 156–161 (1998).

[CrossRef]

P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer–Rao bound,” IEEE Trans. Acoust. Speech Signal Process. 37, 720–741 (1989).

[CrossRef]

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).

[CrossRef]

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).

[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).

[CrossRef]

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).

[CrossRef]

U. Küchler and E. Platen, “Weak discrete time approximation of stochastic differential equations with time delay,” Math. Comput. Simul. 59, 497–507 (2002).

[CrossRef]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, 1999).

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

P. Protter, Stochastic Integration and Differential Equations (Springer, 2005).

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

R. Kliese and A. D. Rakic, “Spectral broadening caused by dynamic speckle in self-mixing velocimetry sensors,” Opt. Express 20, 18757–18771 (2012).

[CrossRef]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).

[CrossRef]

J. R. Tucker, A. D. Rakic, C. J. O’Brien, and A. V. Zvyagin, “Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers,” Appl. Opt. 46, 611–619 (2007).

[CrossRef]

J. Tucker, Y. L. Lim, and A. D. Rakic, “Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser,” in Conference on Optoelectronic and Microelectronic Materials and Devices, M. Gal, ed. (IEEE, 2002), pp. 583–586.

A. Sakamoto, N. Tsuda, and J. Yamada, “Characteristic of self-coupling distance meter using VCSEL,” IEEJ Trans. EIS 126, 1454–1459 (2006).

[CrossRef]

R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag. 34, 276–280(1986).

[CrossRef]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).

[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998).

[CrossRef]

P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer–Rao bound,” IEEE Trans. Acoust. Speech Signal Process. 37, 720–741 (1989).

[CrossRef]

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, 2003).

A. Sakamoto, N. Tsuda, and J. Yamada, “Characteristic of self-coupling distance meter using VCSEL,” IEEJ Trans. EIS 126, 1454–1459 (2006).

[CrossRef]

J. Tucker, Y. L. Lim, and A. D. Rakic, “Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser,” in Conference on Optoelectronic and Microelectronic Materials and Devices, M. Gal, ed. (IEEE, 2002), pp. 583–586.

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).

[CrossRef]

M. Wang, “Fourier transform method for self-mixing interference signal analysis,” Opt. Laser Technol. 33, 409–416 (2001).

[CrossRef]

A. Sakamoto, N. Tsuda, and J. Yamada, “Characteristic of self-coupling distance meter using VCSEL,” IEEJ Trans. EIS 126, 1454–1459 (2006).

[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998).

[CrossRef]

J. R. Tucker, A. D. Rakic, C. J. O’Brien, and A. V. Zvyagin, “Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers,” Appl. Opt. 46, 611–619 (2007).

[CrossRef]

F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41, 658–667 (2002).

[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).

[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).

[CrossRef]

P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer–Rao bound,” IEEE Trans. Acoust. Speech Signal Process. 37, 720–741 (1989).

[CrossRef]

R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag. 34, 276–280(1986).

[CrossRef]

A. Sakamoto, N. Tsuda, and J. Yamada, “Characteristic of self-coupling distance meter using VCSEL,” IEEJ Trans. EIS 126, 1454–1459 (2006).

[CrossRef]

K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics,” J. Biomed. Opt. 8, 152–160 (2003).

[CrossRef]

S. Donati and S. Merlo, “Applications of diode laser feedback interferometry,” J. Opt. 29, 156–161 (1998).

[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).

[CrossRef]

U. Küchler and E. Platen, “Weak discrete time approximation of stochastic differential equations with time delay,” Math. Comput. Simul. 59, 497–507 (2002).

[CrossRef]

L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).

[CrossRef]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).

[CrossRef]

R. Kliese and A. D. Rakic, “Spectral broadening caused by dynamic speckle in self-mixing velocimetry sensors,” Opt. Express 20, 18757–18771 (2012).

[CrossRef]

Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009).

[CrossRef]

M. Wang, “Fourier transform method for self-mixing interference signal analysis,” Opt. Laser Technol. 33, 409–416 (2001).

[CrossRef]

L. C. Godara, “Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations,” Proc. IEEE 85, 1195–1245 (1997).

[CrossRef]

M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993).

[CrossRef]

M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001).

[CrossRef]

M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012).

[CrossRef]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, 1999).

P. Protter, Stochastic Integration and Differential Equations (Springer, 2005).

J. Tucker, Y. L. Lim, and A. D. Rakic, “Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser,” in Conference on Optoelectronic and Microelectronic Materials and Devices, M. Gal, ed. (IEEE, 2002), pp. 583–586.

H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, 2003).

S. M. Kay, Modern Spectral Estimation: Theory and Application (Prentice Hall, 1988).