Abstract

We propose a localized surface plasmon microscope that provides simultaneous imaging of refractive index and fluorescent intensity distributions. We show experimental images of fluorescent and transparent particles under circular pupil illumination to confirm simultaneous high-resolution imaging. Furthermore, we investigate applicability of annular pupil illumination employing two axicons to improve energy efficiency in the fluorescent imaging and find that a brighter image is obtainable by maintaining high spatial resolution for both imaging modes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).
  2. S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79, 1655–1669 (2000).
    [CrossRef]
  3. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection,” Opt. Lett. 28, 1930–1932 (2003).
    [CrossRef]
  4. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063–1071 (2004).
    [CrossRef]
  5. G. Terakado, K. Watanabe, and H. Kano, “Scanning total internal reflection fluorescence microscopy with improved imaging properties by using radial polarization in the illumination system,” Appl. Opt. 48, 1114–1118 (2009).
    [CrossRef]
  6. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
    [CrossRef]
  7. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
    [CrossRef]
  8. K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46, 4985–4990 (2007).
    [CrossRef]
  9. K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt. 49, 887–891 (2010).
    [CrossRef]
  10. K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers,” Biomed. Opt. Express 3, 2012–2020 (2012).
    [CrossRef]
  11. C. H. Sung, D. Chauvat, J. Zyss, and C. K. Lee, “Enhanced detection of fluorescent nanospheres using two-channel radially polarized surface plasmon microscopy,” Opt. Lett. 35, 2873–2875 (2010).
    [CrossRef]
  12. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
    [CrossRef]
  13. T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002).
    [CrossRef]
  14. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16, 20734–20741 (2008).
    [CrossRef]
  15. K.-C. Chiu, C.-Y. Lin, C. Y. Dong, and S.-J. Chen, “Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging,” Opt. Express 19, 5386–5396 (2011).
    [CrossRef]
  16. D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
    [CrossRef]
  17. D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
    [CrossRef]
  18. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35, 517–519 (2010).
    [CrossRef]
  19. D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
    [CrossRef]
  20. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  22. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211–216 (1995).
    [CrossRef]
  23. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
    [CrossRef]

2012 (1)

2011 (1)

2010 (5)

2009 (2)

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

G. Terakado, K. Watanabe, and H. Kano, “Scanning total internal reflection fluorescence microscopy with improved imaging properties by using radial polarization in the illumination system,” Appl. Opt. 48, 1114–1118 (2009).
[CrossRef]

2008 (1)

2007 (1)

2004 (2)

J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063–1071 (2004).
[CrossRef]

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

2003 (1)

2002 (1)

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002).
[CrossRef]

2000 (3)

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79, 1655–1669 (2000).
[CrossRef]

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

1998 (1)

1995 (1)

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211–216 (1995).
[CrossRef]

1992 (1)

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).

Axelrod, D.

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79, 1655–1669 (2000).
[CrossRef]

Bouhelier, A.

D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Bu, J.

Bullen, C.

Burmeister, J. S.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).

Chauvat, D.

Chen, S.-J.

Chiu, K.-C.

Chon, J. W. M.

Chung, E.

Dong, C. Y.

Gao, B. Z.

Grapa, E.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).

Gu, M.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).

Horiguchi, N.

Johansson, M. L.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002).
[CrossRef]

Kambhampati, D.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002).
[CrossRef]

Kano, H.

Kawata, S.

Kim, Y.-H.

Knoll, W.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002).
[CrossRef]

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Lee, C. K.

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Lin, C.-Y.

Masuda, S.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211–216 (1995).
[CrossRef]

Ming, H.

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Miyaji, G.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Miyanaga, N.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Miyazaki, R.

Mizuguchi, S.

Moh, K. J.

Morigaki, K.

Mulvaney, P.

Neumann, T.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002).
[CrossRef]

Nose, T.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211–216 (1995).
[CrossRef]

Ohbayashi, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Okazaki, T.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Reichert, W. M.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).

Sato, S.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211–216 (1995).
[CrossRef]

Sheppard, C. J. R.

So, P. T. C.

Sueda, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Sund, S. E.

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79, 1655–1669 (2000).
[CrossRef]

Sung, C. H.

Tang, W. T.

Terakado, G.

Truskey, G. A.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).

Tsubakimoto, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Wang, P.

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Watanabe, K.

Yuan, G. H.

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Yuan, X.-C.

D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16, 20734–20741 (2008).
[CrossRef]

Zhang, D. G.

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875–879 (2010).
[CrossRef]

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Zhu, S. W.

Zyss, J.

Adv. Funct. Mater. (1)

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12, 575–586 (2002).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009).
[CrossRef]

Biomed. Opt. Express (1)

Biophys. J. (1)

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79, 1655–1669 (2000).
[CrossRef]

Colloids Surf. A (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

J. Cell Sci. (1)

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103, 491–499 (1992).

J. Opt. (1)

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12, 035002 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11–15 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Rev. (1)

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211–216 (1995).
[CrossRef]

Rev. Laser Eng. (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259–264 (2004).
[CrossRef]

Other (2)

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Optical arrangement to excite localized surface plasmons.

Fig. 2.
Fig. 2.

Calculated reflected light intensity distribution at the exit pupil plane of the objective lens.

Fig. 3.
Fig. 3.

Calculated intensity of electric field components on the surface of the substrate shown in the inset when a plane wave illuminates the substrate (θc: critical angle).

Fig. 4.
Fig. 4.

Calculated electric field intensity distributions under the illumination of radially polarized light.

Fig. 5.
Fig. 5.

Calculated electric field intensity distributions by using annular pupil illumination with the NA of 0.9–1.2.

Fig. 6.
Fig. 6.

Experimental setup of the localized surface plasmon microscope. The illumination light is focused by an objective lens to excite a localized surface plasmons, and the reflected light distribution at the exit pupil plane of the objective lens is imaged onto a CCD. The fluorescence emitted by the sample is collected by the same objective lens and converged at the end of an optical fiber.

Fig. 7.
Fig. 7.

Observed images of a fluorescent particle with the diameter of 200 nm by (a) refractive index measurement and (b) two-photon excited fluorescence measurement.

Fig. 8.
Fig. 8.

Observed images of a fluorescent particle with the diameter of 200 nm mixed with transparent particles with the diameter of 175 nm by (a) refractive index measurement and (b) two-photon excited fluorescence measurement.

Fig. 9.
Fig. 9.

Generation of an annular pupil distribution by using a pair of axicons.

Fig. 10.
Fig. 10.

CCD image of reflected light intensity distribution. The white framed area is enlarged to show the detail.

Fig. 11.
Fig. 11.

Observed images of fluorescence particle using annular pupil illumination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρsp=Re(ωcnm2ns2nm2+ns2),

Metrics