Abstract

A broadband polarization splitter operating in the terahertz (THz) band is proposed based on dual-core photonic crystal fiber with orthogonal microstructure in the core regions. The Index Converse Matching Coupling method is presented to design the THz polarization splitter for the first time, which exhibits several advantages, such as short splitting length, high extinction ratio, low loss, and broad operation bandwidth. By numerical simulation, it has been found that the strong coupling occurs within a frequency range of 0.4–0.7 THz. The operation bandwidth is more than 0.15 THz (equal to 138 μm). The shortest splitting length is only 1.83 cm at 0.4 THz. The extinction ratios for both of x and y polarization are better than 15dB when the frequency is larger than 0.51 THz. The lowest material absorption loss is only 0.34 dB at 0.4 THz. Moreover, this structure is simple to design and easy to fabricate over its counterparts in the communication band. Our research offers an effective method to design a broadband THz device and would be of significance for future relevant applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Saulnier, C. Ramus, F. Huet, and M. Carre, “Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate,” IEEE Photon. Technol. Lett. 3, 926–928 (1991).
    [CrossRef]
  2. J. V. Galan, P. Sanchis, J. Garcia, J. Blasco, A. Martinez, and J. Martí, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696(2009).
    [CrossRef]
  3. Y. W. Lee, K. J. Han, B. Lee, and J. Jung, “Polarization independent all-fiber multiwavelength-switchable filter based on a polarization-diversity loop configuration,” Opt. Express 11, 3359–3364 (2003).
    [CrossRef]
  4. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
    [CrossRef]
  5. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, and U. C. Paek, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812–814 (2002).
    [CrossRef]
  6. S. Kunimasa, S. Yuichiro, and K. Masanori, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [CrossRef]
  7. L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
    [CrossRef]
  8. M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A 6, 805–808 (2004).
    [CrossRef]
  9. D. Mao, C. Guan, and L. Yuan, “Polarization splitter based on interference effects in all-solid photonic crystal fibers,” Appl. Opt. 49, 3748–3752 (2010).
    [CrossRef]
  10. L. Zhang and L. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
    [CrossRef]
  11. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13, 7365–7373 (2005).
    [CrossRef]
  12. J. Li, Y. Mao, C. Lu, and H. Y. Tam, “Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms,” IEEE Photon. Technol. Lett. 23, 1358–1360 (2011).
    [CrossRef]
  13. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
    [CrossRef]
  14. K. Nielsen, H. Rasmussen, P. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35, 2879–2881 (2010).
    [CrossRef]
  15. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
    [CrossRef]
  16. D. Chen, M.-L. V. Tse, and H. Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion,” Progress Electromagn. Res. 105, 193–212 (2010).
    [CrossRef]
  17. K. Nielson, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
    [CrossRef]
  18. G. Emillyanov, J. B. Jensen, and O. Bang, “Localized biosensing with Topas micro structural polymer optical fiber,” Opt. Lett. 32, 460–462 (2007).
    [CrossRef]

2011 (1)

J. Li, Y. Mao, C. Lu, and H. Y. Tam, “Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms,” IEEE Photon. Technol. Lett. 23, 1358–1360 (2011).
[CrossRef]

2010 (3)

D. Mao, C. Guan, and L. Yuan, “Polarization splitter based on interference effects in all-solid photonic crystal fibers,” Appl. Opt. 49, 3748–3752 (2010).
[CrossRef]

K. Nielsen, H. Rasmussen, P. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35, 2879–2881 (2010).
[CrossRef]

D. Chen, M.-L. V. Tse, and H. Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion,” Progress Electromagn. Res. 105, 193–212 (2010).
[CrossRef]

2009 (3)

2007 (2)

G. Emillyanov, J. B. Jensen, and O. Bang, “Localized biosensing with Topas micro structural polymer optical fiber,” Opt. Lett. 32, 460–462 (2007).
[CrossRef]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

2005 (1)

2004 (2)

L. Zhang and L. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A 6, 805–808 (2004).
[CrossRef]

2003 (3)

2002 (1)

1992 (1)

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

1991 (1)

J. Saulnier, C. Ramus, F. Huet, and M. Carre, “Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate,” IEEE Photon. Technol. Lett. 3, 926–928 (1991).
[CrossRef]

Adam, A. J.

Auston, D. H.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

Bang, O.

Blasco, J.

Carre, M.

J. Saulnier, C. Ramus, F. Huet, and M. Carre, “Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate,” IEEE Photon. Technol. Lett. 3, 926–928 (1991).
[CrossRef]

Chen, D.

D. Chen, M.-L. V. Tse, and H. Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion,” Progress Electromagn. Res. 105, 193–212 (2010).
[CrossRef]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

Chen, M. Y.

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A 6, 805–808 (2004).
[CrossRef]

Eggleton, B. J.

Emillyanov, G.

Eom, J. B.

Florous, N.

Galan, J. V.

Garcia, J.

Guan, C.

Han, K. J.

Huet, F.

J. Saulnier, C. Ramus, F. Huet, and M. Carre, “Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate,” IEEE Photon. Technol. Lett. 3, 926–928 (1991).
[CrossRef]

Jensen, J. B.

Jepsen, P.

Jepsen, P. U.

Jung, J.

Kim, J.

Koshiba, M.

Kuhlmey, B. T.

Kunimasa, S.

Lee, B.

Lee, B. H.

Lee, Y. W.

Li, J.

J. Li, Y. Mao, C. Lu, and H. Y. Tam, “Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms,” IEEE Photon. Technol. Lett. 23, 1358–1360 (2011).
[CrossRef]

Lu, C.

J. Li, Y. Mao, C. Lu, and H. Y. Tam, “Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms,” IEEE Photon. Technol. Lett. 23, 1358–1360 (2011).
[CrossRef]

Mao, D.

Mao, Y.

J. Li, Y. Mao, C. Lu, and H. Y. Tam, “Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms,” IEEE Photon. Technol. Lett. 23, 1358–1360 (2011).
[CrossRef]

Martí, J.

Martinez, A.

Masanori, K.

Moon, D. S.

Nielsen, K.

Nielson, K.

Paek, U. C.

Planken, P. C.

Ramus, C.

J. Saulnier, C. Ramus, F. Huet, and M. Carre, “Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate,” IEEE Photon. Technol. Lett. 3, 926–928 (1991).
[CrossRef]

Rasmussen, H.

Rasmussen, H. K.

Saitoh, K.

Sanchis, P.

Saulnier, J.

J. Saulnier, C. Ramus, F. Huet, and M. Carre, “Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate,” IEEE Photon. Technol. Lett. 3, 926–928 (1991).
[CrossRef]

Shen, L.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

Tam, H. Y.

J. Li, Y. Mao, C. Lu, and H. Y. Tam, “Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms,” IEEE Photon. Technol. Lett. 23, 1358–1360 (2011).
[CrossRef]

D. Chen, M.-L. V. Tse, and H. Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion,” Progress Electromagn. Res. 105, 193–212 (2010).
[CrossRef]

Tse, M.-L. V.

D. Chen, M.-L. V. Tse, and H. Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion,” Progress Electromagn. Res. 105, 193–212 (2010).
[CrossRef]

Wu, D. K. C.

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

Yang, C.

Yang, L.

L. Zhang and L. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

Yu, R. J.

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A 6, 805–808 (2004).
[CrossRef]

Yuan, L.

Yuichiro, S.

Zhang, L.

L. Zhang and L. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
[CrossRef]

Zhang, X.-C.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. Zhang and L. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185–187 (2007).
[CrossRef]

J. Saulnier, C. Ramus, F. Huet, and M. Carre, “Optical polarization-diversity receiver integrated on titanium-diffused lithium niobate,” IEEE Photon. Technol. Lett. 3, 926–928 (1991).
[CrossRef]

J. Li, Y. Mao, C. Lu, and H. Y. Tam, “Polarization splitting of photonic crystal fiber with hybrid guidance mechanisms,” IEEE Photon. Technol. Lett. 23, 1358–1360 (2011).
[CrossRef]

J. Opt. A (1)

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A 6, 805–808 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Progress Electromagn. Res. (1)

D. Chen, M.-L. V. Tse, and H. Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion,” Progress Electromagn. Res. 105, 193–212 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Effective refractive index as a function of operation frequency for the fiber with different dual-core structures. (a) Dispersion curves of directional coupler with two symmetrically identical cores (the structure of the fiber cross section is shown in the inset). (b) Dispersion curves of the PCF with two identical high birefringence cores. (c) Dispersion curve for the PCF with the right core as shown in Fig. 1(b) rotated by 90 deg. (d) Formation of overlap between the x polarization modes of the two fiber cores through cross section structure adjusting.

Fig. 2.
Fig. 2.

(a) Cross section of the polarization splitter based on dual-core PCF with orthogonal microstructure. (b) The enlarged view of the dual-core microstructure. (c) Fibers A and B corresponding to left and right fiber cores in (a), respectively. Fiber A is a highly birefringent PCF with microstructured rectangular array in the core region. The diameter of the microairholes in the core of fiber A is d2=32μm, and the lattice constants for the x and y directions are ΛAx=70μm and ΛAy=45μm, respectively. The core of fiber B is geometrically equivalent to the core of fiber A by 90 deg rotation except that the diameter of the microairholes of fiber B is d3=30.7μm, which is a little smaller than the ones of fiber A.

Fig. 3.
Fig. 3.

Dispersion curves for fiber A and B as shown in Fig. 2(c).

Fig. 4.
Fig. 4.

Confinement loss of the two polarization modes for fiber A and B, respectively.

Fig. 5.
Fig. 5.

Coupling states of x and y polarization modes at different operation frequencies.

Fig. 6.
Fig. 6.

Splitting length at different operation frequencies.

Fig. 7.
Fig. 7.

Material absorption loss at different operation frequencies.

Fig. 8.
Fig. 8.

Extinction ratio for x and y polarizations at different operation frequencies.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Lc=λ/(2|nxenxo|),
Mloss=K×Lc×N,

Metrics