Abstract

This paper presents, for the first time to the best of our knowledge, the linewidth, frequency, and stability characteristics of a copper-HBr laser. These spectral purity attributes were found to be critically linked with the electrical input power and HBr concentration, unlike that of the optical resonator. Variation in green and yellow radiation linewidths from 4 to 4.5 GHz and from 6.5 to 8.8 GHz, linewidth fluctuations from 50 to 150 MHz and from 60 to 530 MHz as well as frequency fluctuations from 10 to 100 MHz and from 410 to 10 MHz were observed when varying the input power and HBr concentration. These results are comprehensively analyzed in terms of isotopic shift, hyperfine splitting, line broadening, and temperature and gain distribution effects relevant to this laser.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992).
    [CrossRef]
  2. D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992).
    [CrossRef]
  3. D. R. Jones, A. Maitland, and C. E. Little, “A high efficiency 200 W average power copper HyBrID laser,” IEEE J. Quantum Electron. 30, 2385–2390 (1994).
    [CrossRef]
  4. N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
    [CrossRef]
  5. R. P. Mildren, D. R. Jones, and D. J. W. Brown, “A 100 W, near diffraction limited copper HyBrID laser oscillator,” J. Phys. D 31, 1812–1816 (1998).
    [CrossRef]
  6. E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999).
    [CrossRef]
  7. D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997).
    [CrossRef]
  8. C. E. Little, ed., Metal Vapour Lasers: Physics, Engineering and Applications (Wiley, 1999).
  9. C. E. Little and N. V. Sabotinov, eds., Pulsed Metal Vapour Lasers: Physics and Emerging Applications in Industry, Medicine and Science (Kluwer Academic, 1996).
  10. P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
    [CrossRef]
  11. V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
    [CrossRef]
  12. Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012).
    [CrossRef]
  13. M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011).
    [CrossRef]
  14. A. A. Isaev, G. Y. Lemmerman, and G. L. Malafeeva, “Second harmonic generation from pulse copper vapor laser radiation,” Sov. J. Quantum Electron. 10, 983–985 (1980).
    [CrossRef]
  15. G. A. Ruff, L. P. Bernal, and G. M. Faeth, “High speed in-line holocinematography for dispersed phase dynamics,” Appl. Opt. 29, 4544–4546 (1990).
    [CrossRef]
  16. E. W. Eloranta, F. L. Roesler, and J. T. Sroga, “The high spectral resolution LIDAR,” in Optical and Laser Remote Sensing, D. K. Killinger and A. Mooradian, eds. (Springer, 2005), pp. 143–163.
  17. J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
    [CrossRef]
  18. D. C. Gerstenberger, E. L. Latush, and G. J. Collins, “Doppler free laser spectroscopy of atomic copper in a hollow cathode discharge,” Opt. Commun. 31, 28–30 (1979).
    [CrossRef]
  19. N. Singh and H. S. Vora, “On the hyperfine spectral lines of an atomic copper vapor laser,” Opt. Commun. 282, 1393–1398 (2009).
    [CrossRef]
  20. W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
    [CrossRef]
  21. W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988).
    [CrossRef]
  22. C. J. Chen, “Measurement of induced emission cross section and line broadening of copper laser lines 4p P3/22-4S D5/22 and 4p P1/22-4S D3/22,” Phys. Rev. A 18, 2192–2195 (1978).
    [CrossRef]
  23. WS-7 manual, http://www.highfinesse.com/en/wavelengthmeter/ws7.php .
  24. C. Reiser and P. Esherick, “Laser wavemeter with solid Fizeau wedge interferometer,” Opt. Lett. 13, 981–983 (1988).
    [CrossRef]
  25. O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
    [CrossRef]
  26. G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).
  27. R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
    [CrossRef]
  28. N. M. Nerheim, “Measurements of copper ground state and metastable level population in a copper-chloride laser,” J. Appl. Phys. 48, 3244–3250 (1977).
    [CrossRef]
  29. W. C. Martin and W. L. Wiese, “Atomic spectroscopy,” http://www.nist.gov/pml/pubs/atspec/index.cfm .
  30. A. A. Isaev, “Spectral composition of stimulated radiation of a pulsed copper vapor laser,” in Metal Vapor and Metal Halide Vapor Lasers, G. G. Petrash, ed. (Nova Science, 1989), pp. 49–74.
  31. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
  32. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
    [CrossRef]
  33. P. Coutance and J. P. Pique, “Radial and time-resolved measurement of cuprous bromide concentration in a Cu-HBr laser,” IEEE J. Quantum Electron. 34, 1340–1348 (1998).
    [CrossRef]
  34. F. Girard, E. L. Guyadec, and P. Delaporte, “CuH and CuBr absorption measurements and consequences on copper seeding in a Cu-HBr laser medium,” J. Appl. Phys. 89, 843–848 (2001).
    [CrossRef]
  35. R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012).
    [CrossRef]
  36. R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self consistent model for the discharge kinetics in a high repetition rate copper vapour laser,” IEEE J. Quantum Electron. QE-30, 1795–1876 (1994).
  37. “Atomic radii of the elements,” http://en.wikipedia.org .
  38. A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
    [CrossRef]
  39. R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
    [CrossRef]
  40. F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011).
    [CrossRef]
  41. D. R. Jones, A. Maitland, and C. E. Little, “Radial and temporal laser pulse profiles in a 0.2 kW average power copper HyBrID laser,” Proc. SPIE 2118, 42–50 (1994).
    [CrossRef]

2012 (3)

Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012).
[CrossRef]

R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
[CrossRef]

R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012).
[CrossRef]

2011 (5)

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011).
[CrossRef]

M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011).
[CrossRef]

P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
[CrossRef]

V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
[CrossRef]

2010 (1)

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

2009 (1)

N. Singh and H. S. Vora, “On the hyperfine spectral lines of an atomic copper vapor laser,” Opt. Commun. 282, 1393–1398 (2009).
[CrossRef]

2007 (1)

W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
[CrossRef]

2001 (1)

F. Girard, E. L. Guyadec, and P. Delaporte, “CuH and CuBr absorption measurements and consequences on copper seeding in a Cu-HBr laser medium,” J. Appl. Phys. 89, 843–848 (2001).
[CrossRef]

1999 (1)

E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999).
[CrossRef]

1998 (2)

P. Coutance and J. P. Pique, “Radial and time-resolved measurement of cuprous bromide concentration in a Cu-HBr laser,” IEEE J. Quantum Electron. 34, 1340–1348 (1998).
[CrossRef]

R. P. Mildren, D. R. Jones, and D. J. W. Brown, “A 100 W, near diffraction limited copper HyBrID laser oscillator,” J. Phys. D 31, 1812–1816 (1998).
[CrossRef]

1997 (2)

D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997).
[CrossRef]

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

1995 (1)

N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
[CrossRef]

1994 (3)

D. R. Jones, A. Maitland, and C. E. Little, “A high efficiency 200 W average power copper HyBrID laser,” IEEE J. Quantum Electron. 30, 2385–2390 (1994).
[CrossRef]

R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self consistent model for the discharge kinetics in a high repetition rate copper vapour laser,” IEEE J. Quantum Electron. QE-30, 1795–1876 (1994).

D. R. Jones, A. Maitland, and C. E. Little, “Radial and temporal laser pulse profiles in a 0.2 kW average power copper HyBrID laser,” Proc. SPIE 2118, 42–50 (1994).
[CrossRef]

1992 (2)

E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992).
[CrossRef]

D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992).
[CrossRef]

1990 (1)

1988 (2)

C. Reiser and P. Esherick, “Laser wavemeter with solid Fizeau wedge interferometer,” Opt. Lett. 13, 981–983 (1988).
[CrossRef]

W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988).
[CrossRef]

1980 (2)

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

A. A. Isaev, G. Y. Lemmerman, and G. L. Malafeeva, “Second harmonic generation from pulse copper vapor laser radiation,” Sov. J. Quantum Electron. 10, 983–985 (1980).
[CrossRef]

1979 (1)

D. C. Gerstenberger, E. L. Latush, and G. J. Collins, “Doppler free laser spectroscopy of atomic copper in a hollow cathode discharge,” Opt. Commun. 31, 28–30 (1979).
[CrossRef]

1978 (1)

C. J. Chen, “Measurement of induced emission cross section and line broadening of copper laser lines 4p P3/22-4S D5/22 and 4p P1/22-4S D3/22,” Phys. Rev. A 18, 2192–2195 (1978).
[CrossRef]

1977 (2)

N. M. Nerheim, “Measurements of copper ground state and metastable level population in a copper-chloride laser,” J. Appl. Phys. 48, 3244–3250 (1977).
[CrossRef]

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Agrawal, P. K.

R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
[CrossRef]

R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012).
[CrossRef]

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

Agrawal, S.

G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).

Akerboom, F.

N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
[CrossRef]

Bailiang, P.

W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
[CrossRef]

Bangning, M.

W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
[CrossRef]

Bernal, L. P.

Bertrand, G.

E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999).
[CrossRef]

Biswal, R.

R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012).
[CrossRef]

R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
[CrossRef]

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).

Borodina, T. I.

V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
[CrossRef]

Brown, D. J. W.

R. P. Mildren, D. R. Jones, and D. J. W. Brown, “A 100 W, near diffraction limited copper HyBrID laser oscillator,” J. Phys. D 31, 1812–1816 (1998).
[CrossRef]

D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997).
[CrossRef]

R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self consistent model for the discharge kinetics in a high repetition rate copper vapour laser,” IEEE J. Quantum Electron. QE-30, 1795–1876 (1994).

Carman, R. J.

R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self consistent model for the discharge kinetics in a high repetition rate copper vapour laser,” IEEE J. Quantum Electron. QE-30, 1795–1876 (1994).

Chehrghani, A.

P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
[CrossRef]

Chen, C. J.

C. J. Chen, “Measurement of induced emission cross section and line broadening of copper laser lines 4p P3/22-4S D5/22 and 4p P1/22-4S D3/22,” Phys. Rev. A 18, 2192–2195 (1978).
[CrossRef]

Collins, G. J.

D. C. Gerstenberger, E. L. Latush, and G. J. Collins, “Doppler free laser spectroscopy of atomic copper in a hollow cathode discharge,” Opt. Commun. 31, 28–30 (1979).
[CrossRef]

Coutance, P.

E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999).
[CrossRef]

P. Coutance and J. P. Pique, “Radial and time-resolved measurement of cuprous bromide concentration in a Cu-HBr laser,” IEEE J. Quantum Electron. 34, 1340–1348 (1998).
[CrossRef]

Dadras, S.

P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
[CrossRef]

de Lima, M. S. Fernandes

M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011).
[CrossRef]

Delaporte, P.

F. Girard, E. L. Guyadec, and P. Delaporte, “CuH and CuBr absorption measurements and consequences on copper seeding in a Cu-HBr laser medium,” J. Appl. Phys. 89, 843–848 (2001).
[CrossRef]

Diniz, A. E.

M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011).
[CrossRef]

Dixit, S. K.

R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012).
[CrossRef]

R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
[CrossRef]

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).

Dubey, V. K.

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).

Eloranta, E. W.

E. W. Eloranta, F. L. Roesler, and J. T. Sroga, “The high spectral resolution LIDAR,” in Optical and Laser Remote Sensing, D. K. Killinger and A. Mooradian, eds. (Springer, 2005), pp. 143–163.

Erez, G.

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

Esherick, P.

Faeth, G. M.

Gabay, S.

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

Gao, Y.

Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012).
[CrossRef]

Gerstenberger, D. C.

D. C. Gerstenberger, E. L. Latush, and G. J. Collins, “Doppler free laser spectroscopy of atomic copper in a hollow cathode discharge,” Opt. Commun. 31, 28–30 (1979).
[CrossRef]

Girard, F.

F. Girard, E. L. Guyadec, and P. Delaporte, “CuH and CuBr absorption measurements and consequences on copper seeding in a Cu-HBr laser medium,” J. Appl. Phys. 89, 843–848 (2001).
[CrossRef]

Gololobova, O. A.

V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
[CrossRef]

Gubarev, F. A.

F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011).
[CrossRef]

Guyadec, E. L.

F. Girard, E. L. Guyadec, and P. Delaporte, “CuH and CuBr absorption measurements and consequences on copper seeding in a Cu-HBr laser medium,” J. Appl. Phys. 89, 843–848 (2001).
[CrossRef]

E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999).
[CrossRef]

Isaev, A. A.

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

A. A. Isaev, G. Y. Lemmerman, and G. L. Malafeeva, “Second harmonic generation from pulse copper vapor laser radiation,” Sov. J. Quantum Electron. 10, 983–985 (1980).
[CrossRef]

A. A. Isaev, “Spectral composition of stimulated radiation of a pulsed copper vapor laser,” in Metal Vapor and Metal Halide Vapor Lasers, G. G. Petrash, ed. (Nova Science, 1989), pp. 49–74.

Jafarkhani, P.

P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
[CrossRef]

Jones, D. R.

R. P. Mildren, D. R. Jones, and D. J. W. Brown, “A 100 W, near diffraction limited copper HyBrID laser oscillator,” J. Phys. D 31, 1812–1816 (1998).
[CrossRef]

D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997).
[CrossRef]

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
[CrossRef]

D. R. Jones, A. Maitland, and C. E. Little, “A high efficiency 200 W average power copper HyBrID laser,” IEEE J. Quantum Electron. 30, 2385–2390 (1994).
[CrossRef]

D. R. Jones, A. Maitland, and C. E. Little, “Radial and temporal laser pulse profiles in a 0.2 kW average power copper HyBrID laser,” Proc. SPIE 2118, 42–50 (1994).
[CrossRef]

E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992).
[CrossRef]

D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992).
[CrossRef]

Karpuhin, V. T.

V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
[CrossRef]

Ladario, F. P.

M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011).
[CrossRef]

Latush, E. L.

D. C. Gerstenberger, E. L. Latush, and G. J. Collins, “Doppler free laser spectroscopy of atomic copper in a hollow cathode discharge,” Opt. Commun. 31, 28–30 (1979).
[CrossRef]

Lavi, S.

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

Lemmerman, G. Y.

A. A. Isaev, G. Y. Lemmerman, and G. L. Malafeeva, “Second harmonic generation from pulse copper vapor laser radiation,” Sov. J. Quantum Electron. 10, 983–985 (1980).
[CrossRef]

Levin, L. A.

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

Li, C.

W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
[CrossRef]

Li, J.

Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012).
[CrossRef]

Limin, W.

W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
[CrossRef]

Little, C. E.

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997).
[CrossRef]

N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
[CrossRef]

D. R. Jones, A. Maitland, and C. E. Little, “A high efficiency 200 W average power copper HyBrID laser,” IEEE J. Quantum Electron. 30, 2385–2390 (1994).
[CrossRef]

D. R. Jones, A. Maitland, and C. E. Little, “Radial and temporal laser pulse profiles in a 0.2 kW average power copper HyBrID laser,” Proc. SPIE 2118, 42–50 (1994).
[CrossRef]

E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992).
[CrossRef]

D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992).
[CrossRef]

Liu, Y.

Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012).
[CrossRef]

Livingstone, E. S.

E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992).
[CrossRef]

Longbothum, R. L.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Mahakud, R.

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

Maitland, A.

N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
[CrossRef]

D. R. Jones, A. Maitland, and C. E. Little, “A high efficiency 200 W average power copper HyBrID laser,” IEEE J. Quantum Electron. 30, 2385–2390 (1994).
[CrossRef]

D. R. Jones, A. Maitland, and C. E. Little, “Radial and temporal laser pulse profiles in a 0.2 kW average power copper HyBrID laser,” Proc. SPIE 2118, 42–50 (1994).
[CrossRef]

E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992).
[CrossRef]

D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992).
[CrossRef]

Malafeeva, G. L.

A. A. Isaev, G. Y. Lemmerman, and G. L. Malafeeva, “Second harmonic generation from pulse copper vapor laser radiation,” Sov. J. Quantum Electron. 10, 983–985 (1980).
[CrossRef]

Malikov, M. M.

V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
[CrossRef]

Mildren, R. P.

R. P. Mildren, D. R. Jones, and D. J. W. Brown, “A 100 W, near diffraction limited copper HyBrID laser oscillator,” J. Phys. D 31, 1812–1816 (1998).
[CrossRef]

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).

Mishra, G. K.

R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
[CrossRef]

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).

Mittal, J. K.

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

Nakhe, S. V.

R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
[CrossRef]

R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012).
[CrossRef]

Nerheim, N. M.

N. M. Nerheim, “Measurements of copper ground state and metastable level population in a copper-chloride laser,” J. Appl. Phys. 48, 3244–3250 (1977).
[CrossRef]

Nevesand, D.

M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011).
[CrossRef]

Olivero, J. J.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Peltier, C.

E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999).
[CrossRef]

Petrash, G. G.

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

Piper, J. A.

R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self consistent model for the discharge kinetics in a high repetition rate copper vapour laser,” IEEE J. Quantum Electron. QE-30, 1795–1876 (1994).

Pique, J. P.

P. Coutance and J. P. Pique, “Radial and time-resolved measurement of cuprous bromide concentration in a Cu-HBr laser,” IEEE J. Quantum Electron. 34, 1340–1348 (1998).
[CrossRef]

Prakash, O.

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).

Purbia, G. S.

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

Reiser, C.

Roesler, F. L.

E. W. Eloranta, F. L. Roesler, and J. T. Sroga, “The high spectral resolution LIDAR,” in Optical and Laser Remote Sensing, D. K. Killinger and A. Mooradian, eds. (Springer, 2005), pp. 143–163.

Ruff, G. A.

Sabbaghzadeh, J.

P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
[CrossRef]

Sabotinov, N. V.

N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
[CrossRef]

D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992).
[CrossRef]

Saxena, P.

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

Shengpen, S.

W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988).
[CrossRef]

Singh, N.

N. Singh and H. S. Vora, “On the hyperfine spectral lines of an atomic copper vapor laser,” Opt. Commun. 282, 1393–1398 (2009).
[CrossRef]

Smilanski, I.

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

Sroga, J. T.

E. W. Eloranta, F. L. Roesler, and J. T. Sroga, “The high spectral resolution LIDAR,” in Optical and Laser Remote Sensing, D. K. Killinger and A. Mooradian, eds. (Springer, 2005), pp. 143–163.

Sukhanov, V. B.

F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011).
[CrossRef]

Tenenbaum, J.

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

Tiejun, X.

W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988).
[CrossRef]

Torkamany, M. J.

P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
[CrossRef]

Trigub, M. V.

F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011).
[CrossRef]

Troitskiy, V. O.

F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011).
[CrossRef]

Val’Yano, G. E.

V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
[CrossRef]

Vora, H. S.

N. Singh and H. S. Vora, “On the hyperfine spectral lines of an atomic copper vapor laser,” Opt. Commun. 282, 1393–1398 (2009).
[CrossRef]

Whyte, C. G.

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997).
[CrossRef]

Yongjiang, W.

W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988).
[CrossRef]

Yuan, X.

Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012).
[CrossRef]

Yube, W.

W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
[CrossRef]

Zemskov, K.

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

Zhehua, W.

W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988).
[CrossRef]

Adv. Mater. Res. (1)

Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988).
[CrossRef]

High Temp. (1)

V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011).
[CrossRef]

IEEE J. Quantum Electron. (6)

P. Coutance and J. P. Pique, “Radial and time-resolved measurement of cuprous bromide concentration in a Cu-HBr laser,” IEEE J. Quantum Electron. 34, 1340–1348 (1998).
[CrossRef]

R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self consistent model for the discharge kinetics in a high repetition rate copper vapour laser,” IEEE J. Quantum Electron. QE-30, 1795–1876 (1994).

D. R. Jones, A. Maitland, and C. E. Little, “A high efficiency 200 W average power copper HyBrID laser,” IEEE J. Quantum Electron. 30, 2385–2390 (1994).
[CrossRef]

N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995).
[CrossRef]

E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999).
[CrossRef]

A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997).
[CrossRef]

Int. J. Surf. Sci. Eng. (1)

M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011).
[CrossRef]

J. Appl. Phys. (2)

F. Girard, E. L. Guyadec, and P. Delaporte, “CuH and CuBr absorption measurements and consequences on copper seeding in a Cu-HBr laser medium,” J. Appl. Phys. 89, 843–848 (2001).
[CrossRef]

N. M. Nerheim, “Measurements of copper ground state and metastable level population in a copper-chloride laser,” J. Appl. Phys. 48, 3244–3250 (1977).
[CrossRef]

J. Phys. D (1)

R. P. Mildren, D. R. Jones, and D. J. W. Brown, “A 100 W, near diffraction limited copper HyBrID laser oscillator,” J. Phys. D 31, 1812–1816 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

J. Russ. Laser Res. (1)

R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012).
[CrossRef]

Nanotechnology (1)

P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011).
[CrossRef]

Opt. Commun. (8)

O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010).
[CrossRef]

D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992).
[CrossRef]

D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997).
[CrossRef]

J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980).
[CrossRef]

D. C. Gerstenberger, E. L. Latush, and G. J. Collins, “Doppler free laser spectroscopy of atomic copper in a hollow cathode discharge,” Opt. Commun. 31, 28–30 (1979).
[CrossRef]

N. Singh and H. S. Vora, “On the hyperfine spectral lines of an atomic copper vapor laser,” Opt. Commun. 282, 1393–1398 (2009).
[CrossRef]

W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007).
[CrossRef]

F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011).
[CrossRef]

Opt. Eng. (2)

R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011).
[CrossRef]

R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992).
[CrossRef]

Phys. Rev. A (1)

C. J. Chen, “Measurement of induced emission cross section and line broadening of copper laser lines 4p P3/22-4S D5/22 and 4p P1/22-4S D3/22,” Phys. Rev. A 18, 2192–2195 (1978).
[CrossRef]

Proc. SPIE (1)

D. R. Jones, A. Maitland, and C. E. Little, “Radial and temporal laser pulse profiles in a 0.2 kW average power copper HyBrID laser,” Proc. SPIE 2118, 42–50 (1994).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. A. Isaev, G. Y. Lemmerman, and G. L. Malafeeva, “Second harmonic generation from pulse copper vapor laser radiation,” Sov. J. Quantum Electron. 10, 983–985 (1980).
[CrossRef]

Other (9)

E. W. Eloranta, F. L. Roesler, and J. T. Sroga, “The high spectral resolution LIDAR,” in Optical and Laser Remote Sensing, D. K. Killinger and A. Mooradian, eds. (Springer, 2005), pp. 143–163.

C. E. Little, ed., Metal Vapour Lasers: Physics, Engineering and Applications (Wiley, 1999).

C. E. Little and N. V. Sabotinov, eds., Pulsed Metal Vapour Lasers: Physics and Emerging Applications in Industry, Medicine and Science (Kluwer Academic, 1996).

WS-7 manual, http://www.highfinesse.com/en/wavelengthmeter/ws7.php .

W. C. Martin and W. L. Wiese, “Atomic spectroscopy,” http://www.nist.gov/pml/pubs/atspec/index.cfm .

A. A. Isaev, “Spectral composition of stimulated radiation of a pulsed copper vapor laser,” in Metal Vapor and Metal Halide Vapor Lasers, G. G. Petrash, ed. (Nova Science, 1989), pp. 49–74.

P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).

“Atomic radii of the elements,” http://en.wikipedia.org .

G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for measurement of Cu-HBrL spectral linewidth and frequency stability.

Fig. 2.
Fig. 2.

Energy levels and laser transitions in copper atom relevant to Cu-HBrL.

Fig. 3.
Fig. 3.

Variation of spectral linewidth Cu-HBrL lines (green and yellow) with wall plug electrical input power.

Fig. 4.
Fig. 4.

Variation of spectral linewidth Cu-HBrL lines (green and yellow) with HBr concentration.

Fig. 5.
Fig. 5.

Variation of fluctuation of (a) linewidth and (b) transition frequency of Cu-HBrL lines (green and yellow) with wall plug electrical input power.

Fig. 6.
Fig. 6.

Variation of fluctuation of (a) linewidth and (b) transition frequency of Cu-HBrL lines (green and yellow) with HBr concentration.

Fig. 7.
Fig. 7.

Typical calculated Cu-HBrL line shape for (a) green line and (b) yellow line.

Fig. 8.
Fig. 8.

Variation of Doppler linewidth and convoluted linewidths of green and yellow lines with average gas temperature.

Tables (1)

Tables Icon

Table 1. Frequency Shifts and Relative Intensities of the Hyperfine Components of Cu-HBrL Lines Based on Transitions in Natural Copper Atoms

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ΔλR8.6×1030g0guλ2λrfrn0,
ΔλW3×1015λ2C62/5(Tgμ)3/10ng,
ΔλD7.16×107λ(TgM),
ΔvR2.97×108nCu,
ΔvW8Rπ3kB2Tg(kσCu-k·Pkμ),
ΔvD7.16×107v0TgMCu,
ΔvNAul2π,
ΔvL=ΔvN+ΔvR+ΔvW.
Δv0.5346ΔvL+0.2166(ΔvL)2+(ΔvD)2.
I(v)=i,jαjβjIi(vj)=jαjβj[IN(vj)+IR(vj)+IW(vj)+ID(vj)],
ΔvH=vhfsvo=AC2+(B4)(3C(C+1)4I(I+1)J(J+1)2IJ(2I1)(2J1)),
Tg=0RbTg(r)rdr0Rbrdr=4πλ0l(m+2)(Tg(0)m+2Tbm+2δ·Pin),
Tg(r)=[Twm+1+(m+1)δ·Pin2πλol{12Rb2(Rb2r2)+ln(RtRb)}]1m+1,
δ·Pin=fs·[01/fs{V(t)LdI(t)dt}I(t)dt],
I(v)jαjβjID(vj)jI(vj)e[4(ln2)(vv0j)2(ΔvjD)2],

Metrics