Abstract

In this paper, we introduce a numerical simulation of a phase detecting surface plasmon resonance (SPR) scheme based on spectral interference. Based on the simulation, we propose a method to optimize various aspects of SPR sensors, which enables better performance in both measurement range (MR) and sensitivity. In the simulation, four parameters including the spectrum of the broadband light source, incident angle, Au film thickness, and refractive index of the prism coupler are analyzed. The results show that it is a good solution for better performance to use a warm white broadband (625–800 nm) light source, a divergence angle of the collimated incident light less than 0.02°, and an optimized 48 nm thick Au film when a visible broadband light source is used. If a near-IR light source is used, however, the Au film thickness should be somewhat thinner according the specific spectrum. In addition, a wider MR could be obtained if a prism coupler with higher refractive index is used. With all the parameters appropriately set, the SPR MR could be extended to 0.55 refractive index units while keeping the sensitivity at a level of 108.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hlubina, D. Ciprian, and J. Lunacek, “Spectral interferometric technique to measure the ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
    [CrossRef]
  2. Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
    [CrossRef]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [CrossRef]
  4. A. Lahav, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33, 2539–2541 (2008).
    [CrossRef]
  5. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33, 512–514 (2008).
    [CrossRef]
  6. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?,” Opt. Express 17, 16505–16517 (2009).
    [CrossRef]
  7. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17, 21191–21204 (2009).
    [CrossRef]
  8. S. Y. Wu and H. P. Ho, “Single-beam self-referenced phase-sensitive surface plasmon resonance sensor with high detection resolution,” Chin. Opt. Lett. 6, 176–178(2008).
    [CrossRef]
  9. S. P. Ng, C. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Surface plasmon resonance biosensing via differential spectral phase interferometry,” Proc. SPIE 7911, 79110C (2011).
    [CrossRef]
  10. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
    [CrossRef]
  11. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
    [CrossRef]
  12. A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
    [CrossRef]
  13. S. P. Ng, C. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express 19, 4521–4527 (2011).
    [CrossRef]
  14. P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14, 7678–7685 (2006).
    [CrossRef]
  15. Z. Zheng, Y. Wan, X. Zhao, and J. Zhu, “Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors,” Appl. Opt. 48, 2491–2495 (2009).
    [CrossRef]
  16. X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
    [CrossRef]
  17. P. Hlubina, D. Ciprian, J. Lunacek, and R. C. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88, 397–403 (2007).
    [CrossRef]
  18. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Opt. Mater. 27, 1093–1096 (2004).
    [CrossRef]
  19. R. A. Innes and J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).
    [CrossRef]
  20. http://refractiveindex.info/ .
  21. P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
    [CrossRef]
  22. K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317(2007).
    [CrossRef]

2011 (2)

S. P. Ng, C. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Surface plasmon resonance biosensing via differential spectral phase interferometry,” Proc. SPIE 7911, 79110C (2011).
[CrossRef]

S. P. Ng, C. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express 19, 4521–4527 (2011).
[CrossRef]

2009 (4)

2008 (4)

2007 (3)

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317(2007).
[CrossRef]

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

P. Hlubina, D. Ciprian, J. Lunacek, and R. C. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88, 397–403 (2007).
[CrossRef]

2006 (1)

2004 (1)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Opt. Mater. 27, 1093–1096 (2004).
[CrossRef]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

2001 (1)

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

1999 (1)

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

1998 (1)

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

1997 (1)

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

1987 (1)

R. A. Innes and J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

Abdulhalim, I.

Auslender, M.

Chlebus, R.

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[CrossRef]

Chlebus, R. C.

P. Hlubina, D. Ciprian, J. Lunacek, and R. C. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88, 397–403 (2007).
[CrossRef]

Ciprian, D.

P. Hlubina, D. Ciprian, and J. Lunacek, “Spectral interferometric technique to measure the ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
[CrossRef]

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[CrossRef]

P. Hlubina, D. Ciprian, J. Lunacek, and R. C. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88, 397–403 (2007).
[CrossRef]

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14, 7678–7685 (2006).
[CrossRef]

Grigorenko, A. N.

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17, 21191–21204 (2009).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

Guo, J.

Hastings, J. T.

Hidernori, S.

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

Hlubina, P.

P. Hlubina, D. Ciprian, and J. Lunacek, “Spectral interferometric technique to measure the ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
[CrossRef]

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[CrossRef]

P. Hlubina, D. Ciprian, J. Lunacek, and R. C. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88, 397–403 (2007).
[CrossRef]

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14, 7678–7685 (2006).
[CrossRef]

Ho, H. P.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?,” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

Innes, R. A.

R. A. Innes and J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

Jiang, H.

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17, 21191–21204 (2009).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Opt. Mater. 27, 1093–1096 (2004).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Keathley, P. D.

Kong, S. K.

S. P. Ng, C. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Surface plasmon resonance biosensing via differential spectral phase interferometry,” Proc. SPIE 7911, 79110C (2011).
[CrossRef]

Lahav, A.

Lesnak, M.

Lunacek, J.

P. Hlubina, D. Ciprian, and J. Lunacek, “Spectral interferometric technique to measure the ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
[CrossRef]

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[CrossRef]

P. Hlubina, D. Ciprian, J. Lunacek, and R. C. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88, 397–403 (2007).
[CrossRef]

P. Hlubina, D. Ciprian, J. Lunacek, and M. Lesnak, “Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film,” Opt. Express 14, 7678–7685 (2006).
[CrossRef]

Luong, J. H. T.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Opt. Mater. 27, 1093–1096 (2004).
[CrossRef]

Meunier, M.

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Opt. Mater. 27, 1093–1096 (2004).
[CrossRef]

Michihiro, H.

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

Ng, S. P.

S. P. Ng, C. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express 19, 4521–4527 (2011).
[CrossRef]

S. P. Ng, C. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Surface plasmon resonance biosensing via differential spectral phase interferometry,” Proc. SPIE 7911, 79110C (2011).
[CrossRef]

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Patskovsky, S.

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17, 21191–21204 (2009).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Opt. Mater. 27, 1093–1096 (2004).
[CrossRef]

Piliarik, M.

Qian, K.

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317(2007).
[CrossRef]

Sambles, J. R.

R. A. Innes and J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

Takaaki, H.

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

Tomoko, T.

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

Wan, Y.

Wang, H.

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

Wu, C. L.

S. P. Ng, C. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express 19, 4521–4527 (2011).
[CrossRef]

S. P. Ng, C. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Surface plasmon resonance biosensing via differential spectral phase interferometry,” Proc. SPIE 7911, 79110C (2011).
[CrossRef]

Wu, S. Y.

Yin, C.

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

Yoshikazu, K.

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

Yu, X.

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

Yuhki, Y.

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

Zhao, L.

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

Zhao, X.

Zheng, Z.

Zhu, J.

Zhu, S.

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

P. Hlubina, D. Ciprian, J. Lunacek, and R. C. Chlebus, “Phase retrieval from the spectral interference signal used to measure thickness of SiO2 thin film on silicon wafer,” Appl. Phys. B 88, 397–403 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

Biosens. Bioelectron. (1)

Y. Yuhki, S. Hidernori, T. Tomoko, H. Takaaki, K. Yoshikazu, and H. Michihiro, “The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions,” Biosens. Bioelectron. 22, 1081–1086 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

J. Phys. F (1)

R. A. Innes and J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

Opt. Commun. (2)

P. Hlubina, J. Lunacek, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lasers Eng. (1)

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317(2007).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Opt. Mater. 27, 1093–1096 (2004).
[CrossRef]

Proc. SPIE (1)

S. P. Ng, C. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Surface plasmon resonance biosensing via differential spectral phase interferometry,” Proc. SPIE 7911, 79110C (2011).
[CrossRef]

Quantum Electron. (1)

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Sens. Actuators B (1)

X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B 76, 199–202 (2001).
[CrossRef]

Other (1)

http://refractiveindex.info/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scheme of the phase-detecting SPR sensor based on spectrum interference.

Fig. 2.
Fig. 2.

Spectral phase curves with different wavelengths (a) from 500 to 600 nm and (b) from 700 to 1500 nm.

Fig. 3.
Fig. 3.

DL of the SPR sensor at different wavelengths.

Fig. 4.
Fig. 4.

SPR phase curves with different incident angles.

Fig. 5.
Fig. 5.

SPR phase response of angle allowance.

Fig. 6.
Fig. 6.

SPR curves with different Au film thicknesses.

Fig. 7.
Fig. 7.

OT of Au film with different wavelength.

Fig. 8.
Fig. 8.

Effect of prism refractive index on SPR curve.

Fig. 9.
Fig. 9.

Spectral interference signals in different conditions

Tables (1)

Tables Icon

Table 1. MR and DL of the SPR Sensor with Different Wavelengths

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

IP(λ)=I0(λ){1+Vp(λ)exp((π2/2)[Δg(λ)ΔλR/λ2]2)cos[φP+φnoise+φOPD]},
IS(λ)=I0(λ){1+VS(λ)exp((π2/2)[Δg(λ)ΔλR/λ2]2)cos[φS+φnoise+φOPD]},
Vp,s(λ)=VI2Rp,s(λ)1+Rp,s(λ),
Δg(λ)=2L+2tef[n(λ)λdn(λ)dλ],

Metrics