Abstract

From the angle of sensitivity of the long period fiber grating (LPFG) resonant transmission spectrum, we demonstrate the sensitivity of LPFG resonance peak amplitude changing with transverse loads. The design of a resonant peak modulation-based LPFG rebar corrosion sensor is described by combining the spectral characteristics of LPFG with the expansion state monitoring of rebar corrosion. LPFG spectrum curves corresponding with different rebar corrosion status of the environment under test are captured by the monitoring technique of LPFG transmission spectra, and the relationship between the resonance peak amplitude change and the state of rebar corrosion is obtained, that is, the variation of LPFG resonance peak amplitude increases with the intensifying of the degree of rebar corrosion. The experimental results numerically show that the sensor response has good regularity for a wide range of travel.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Mehta and R. W. Burrous, “Building durable structures in the 21st century,” Concr. Int. 23, 57–63 (2001).
  2. L. Chernin, D. V. Val, and K. Y. Volokh, “Analytical modelling of concrete cover cracking caused by corrosion of reinforcement,” Mater. Struct. 43, 543–556 (2010).
  3. T. Parthiban and R. Ravi, “Potential monitoring system for corrosion of steel in concrete,” Adv. Eng. Softw. 37375–381 (2006).
    [CrossRef]
  4. R. B. Polder, “Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation,” Constr. Build. Mater. 15, 125–134 (2001).
    [CrossRef]
  5. M. Raupach and P. Schiebl, “Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures,” NDT & E Int. 34, 435–442 (2001).
    [CrossRef]
  6. J. T. Simen and M. M. Andringa, “Wireless sensors for monitoring corrosion in reinforced concrete members,” Proc. SPIE 5391, 587–596 (2004).
    [CrossRef]
  7. S. K. T. Grattan and P. A. M. Basher, “Fibre bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures,” J. Phys. 76, 1–7 (2007).
    [CrossRef]
  8. J. R. Casas and J. S. Cruz Panlo, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
    [CrossRef]
  9. A. Sehi and H. Katakura, “A hetero-core structured fiber optic pH sensor,” Anal. Chim. Acta 582, 154–257 (2007).
    [CrossRef]
  10. K. D. Bennett and L. R. Mclaughlin, “Monitoring of corrosion in steel structures using optical fiber sensors,” Proc. SPIE 2446, 48–59 (1995).
    [CrossRef]
  11. J. Li, J. Wu, and J. Q. Gao, “Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel,” Spectrosc. Spectral Anal. 30, 283–286 (2010).
  12. Y.-J. Rao, Z.-L. Ran, X. Liao, and H.-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936–14941 (2007).
    [CrossRef]
  13. T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
    [CrossRef]
  14. H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
    [CrossRef]
  15. Y. Wang, D. N. Wang, W. Jin, and Y. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
    [CrossRef]
  16. B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816–6823 (2003).
    [CrossRef]
  17. H.-Y. Liu, D.-K. Liang, and J. Zeng, “Long period fiber grating transverse load effect-based sensor for asphalt pavement pressure field measurements,” Sens. Actuat. A 168, 262–266 (2011).
    [CrossRef]
  18. A. Poursaee and C. M. Hansson, “Potential pitfalls in assessing chloride-induced corrosion of steel in concrete,” Cem. Concr. Res. 39, 391–400 (2009).
    [CrossRef]
  19. H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
    [CrossRef]

2012 (1)

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

2011 (1)

H.-Y. Liu, D.-K. Liang, and J. Zeng, “Long period fiber grating transverse load effect-based sensor for asphalt pavement pressure field measurements,” Sens. Actuat. A 168, 262–266 (2011).
[CrossRef]

2010 (3)

J. Li, J. Wu, and J. Q. Gao, “Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel,” Spectrosc. Spectral Anal. 30, 283–286 (2010).

L. Chernin, D. V. Val, and K. Y. Volokh, “Analytical modelling of concrete cover cracking caused by corrosion of reinforcement,” Mater. Struct. 43, 543–556 (2010).

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
[CrossRef]

2009 (1)

A. Poursaee and C. M. Hansson, “Potential pitfalls in assessing chloride-induced corrosion of steel in concrete,” Cem. Concr. Res. 39, 391–400 (2009).
[CrossRef]

2007 (4)

Y. Wang, D. N. Wang, W. Jin, and Y. Rao, “Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser,” Appl. Opt. 46, 3079–3086 (2007).
[CrossRef]

Y.-J. Rao, Z.-L. Ran, X. Liao, and H.-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936–14941 (2007).
[CrossRef]

A. Sehi and H. Katakura, “A hetero-core structured fiber optic pH sensor,” Anal. Chim. Acta 582, 154–257 (2007).
[CrossRef]

S. K. T. Grattan and P. A. M. Basher, “Fibre bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures,” J. Phys. 76, 1–7 (2007).
[CrossRef]

2006 (1)

T. Parthiban and R. Ravi, “Potential monitoring system for corrosion of steel in concrete,” Adv. Eng. Softw. 37375–381 (2006).
[CrossRef]

2004 (1)

J. T. Simen and M. M. Andringa, “Wireless sensors for monitoring corrosion in reinforced concrete members,” Proc. SPIE 5391, 587–596 (2004).
[CrossRef]

2003 (3)

J. R. Casas and J. S. Cruz Panlo, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816–6823 (2003).
[CrossRef]

2001 (3)

P. K. Mehta and R. W. Burrous, “Building durable structures in the 21st century,” Concr. Int. 23, 57–63 (2001).

R. B. Polder, “Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation,” Constr. Build. Mater. 15, 125–134 (2001).
[CrossRef]

M. Raupach and P. Schiebl, “Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures,” NDT & E Int. 34, 435–442 (2001).
[CrossRef]

1995 (1)

K. D. Bennett and L. R. Mclaughlin, “Monitoring of corrosion in steel structures using optical fiber sensors,” Proc. SPIE 2446, 48–59 (1995).
[CrossRef]

Allsop, T.

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Andringa, M. M.

J. T. Simen and M. M. Andringa, “Wireless sensors for monitoring corrosion in reinforced concrete members,” Proc. SPIE 5391, 587–596 (2004).
[CrossRef]

Bachim, B. L.

Basher, P. A. M.

S. K. T. Grattan and P. A. M. Basher, “Fibre bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures,” J. Phys. 76, 1–7 (2007).
[CrossRef]

Bennett, K. D.

K. D. Bennett and L. R. Mclaughlin, “Monitoring of corrosion in steel structures using optical fiber sensors,” Proc. SPIE 2446, 48–59 (1995).
[CrossRef]

Bennion, I.

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Buenfeld, N. R.

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
[CrossRef]

Burrous, R. W.

P. K. Mehta and R. W. Burrous, “Building durable structures in the 21st century,” Concr. Int. 23, 57–63 (2001).

Casas, J. R.

J. R. Casas and J. S. Cruz Panlo, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

Chernin, L.

L. Chernin, D. V. Val, and K. Y. Volokh, “Analytical modelling of concrete cover cracking caused by corrosion of reinforcement,” Mater. Struct. 43, 543–556 (2010).

Cruz Panlo, J. S.

J. R. Casas and J. S. Cruz Panlo, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

Deng, H.-Y.

Gao, J. Q.

J. Li, J. Wu, and J. Q. Gao, “Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel,” Spectrosc. Spectral Anal. 30, 283–286 (2010).

Gaylord, T. K.

Geng, J.

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

Grattan, S. K. T.

S. K. T. Grattan and P. A. M. Basher, “Fibre bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures,” J. Phys. 76, 1–7 (2007).
[CrossRef]

Hansson, C. M.

A. Poursaee and C. M. Hansson, “Potential pitfalls in assessing chloride-induced corrosion of steel in concrete,” Cem. Concr. Res. 39, 391–400 (2009).
[CrossRef]

Jin, J.

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

Jin, W.

Jin, W. L.

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
[CrossRef]

Karimi, A. R.

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
[CrossRef]

Katakura, H.

A. Sehi and H. Katakura, “A hetero-core structured fiber optic pH sensor,” Anal. Chim. Acta 582, 154–257 (2007).
[CrossRef]

Li, J.

J. Li, J. Wu, and J. Q. Gao, “Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel,” Spectrosc. Spectral Anal. 30, 283–286 (2010).

Liang, D.-K.

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

H.-Y. Liu, D.-K. Liang, and J. Zeng, “Long period fiber grating transverse load effect-based sensor for asphalt pavement pressure field measurements,” Sens. Actuat. A 168, 262–266 (2011).
[CrossRef]

Liao, X.

Liu, H.-Y.

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

H.-Y. Liu, D.-K. Liang, and J. Zeng, “Long period fiber grating transverse load effect-based sensor for asphalt pavement pressure field measurements,” Sens. Actuat. A 168, 262–266 (2011).
[CrossRef]

Mclaughlin, L. R.

K. D. Bennett and L. R. Mclaughlin, “Monitoring of corrosion in steel structures using optical fiber sensors,” Proc. SPIE 2446, 48–59 (1995).
[CrossRef]

Mehta, P. K.

P. K. Mehta and R. W. Burrous, “Building durable structures in the 21st century,” Concr. Int. 23, 57–63 (2001).

Parthiban, T.

T. Parthiban and R. Ravi, “Potential monitoring system for corrosion of steel in concrete,” Adv. Eng. Softw. 37375–381 (2006).
[CrossRef]

Polder, R. B.

R. B. Polder, “Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation,” Constr. Build. Mater. 15, 125–134 (2001).
[CrossRef]

Poursaee, A.

A. Poursaee and C. M. Hansson, “Potential pitfalls in assessing chloride-induced corrosion of steel in concrete,” Cem. Concr. Res. 39, 391–400 (2009).
[CrossRef]

Ran, Z.-L.

Rao, Y.

Rao, Y.-J.

Raupach, M.

M. Raupach and P. Schiebl, “Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures,” NDT & E Int. 34, 435–442 (2001).
[CrossRef]

Ravi, R.

T. Parthiban and R. Ravi, “Potential monitoring system for corrosion of steel in concrete,” Adv. Eng. Softw. 37375–381 (2006).
[CrossRef]

Schiebl, P.

M. Raupach and P. Schiebl, “Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures,” NDT & E Int. 34, 435–442 (2001).
[CrossRef]

Sehi, A.

A. Sehi and H. Katakura, “A hetero-core structured fiber optic pH sensor,” Anal. Chim. Acta 582, 154–257 (2007).
[CrossRef]

Simen, J. T.

J. T. Simen and M. M. Andringa, “Wireless sensors for monitoring corrosion in reinforced concrete members,” Proc. SPIE 5391, 587–596 (2004).
[CrossRef]

Val, D. V.

L. Chernin, D. V. Val, and K. Y. Volokh, “Analytical modelling of concrete cover cracking caused by corrosion of reinforcement,” Mater. Struct. 43, 543–556 (2010).

Volokh, K. Y.

L. Chernin, D. V. Val, and K. Y. Volokh, “Analytical modelling of concrete cover cracking caused by corrosion of reinforcement,” Mater. Struct. 43, 543–556 (2010).

Wang, D. N.

Wang, Y.

Webb, D. J.

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Wong, H. S.

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
[CrossRef]

Wu, J.

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

J. Li, J. Wu, and J. Q. Gao, “Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel,” Spectrosc. Spectral Anal. 30, 283–286 (2010).

Zeng, J.

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

H.-Y. Liu, D.-K. Liang, and J. Zeng, “Long period fiber grating transverse load effect-based sensor for asphalt pavement pressure field measurements,” Sens. Actuat. A 168, 262–266 (2011).
[CrossRef]

Zhao, Y. X.

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
[CrossRef]

Adv. Eng. Softw. (1)

T. Parthiban and R. Ravi, “Potential monitoring system for corrosion of steel in concrete,” Adv. Eng. Softw. 37375–381 (2006).
[CrossRef]

Anal. Chim. Acta (1)

A. Sehi and H. Katakura, “A hetero-core structured fiber optic pH sensor,” Anal. Chim. Acta 582, 154–257 (2007).
[CrossRef]

Appl. Opt. (2)

Cem. Concr. Res. (1)

A. Poursaee and C. M. Hansson, “Potential pitfalls in assessing chloride-induced corrosion of steel in concrete,” Cem. Concr. Res. 39, 391–400 (2009).
[CrossRef]

Concr. Int. (1)

P. K. Mehta and R. W. Burrous, “Building durable structures in the 21st century,” Concr. Int. 23, 57–63 (2001).

Constr. Build. Mater. (1)

R. B. Polder, “Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation,” Constr. Build. Mater. 15, 125–134 (2001).
[CrossRef]

Corros. Sci. (1)

H. S. Wong, Y. X. Zhao, A. R. Karimi, N. R. Buenfeld, and W. L. Jin, “On the penetration of corrosion products from reinforcing steel into concrete due to chloride-induced corrosion,” Corros. Sci. 52, 2469–2480 (2010).
[CrossRef]

J. Bridge Eng. (1)

J. R. Casas and J. S. Cruz Panlo, “Fiber optic sensors for bridge monitoring,” J. Bridge Eng. 8, 362–373 (2003).
[CrossRef]

J. Intel. Mater. Syst. Struct. (1)

H.-Y. Liu, D.-K. Liang, J. Zeng, J. Jin, J. Wu, and J. Geng, “Design of a long period fiber grating sensor for reinforcing bar corrosion in concrete,” J. Intel. Mater. Syst. Struct. 23, 45–51 (2012).
[CrossRef]

J. Phys. (1)

S. K. T. Grattan and P. A. M. Basher, “Fibre bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures,” J. Phys. 76, 1–7 (2007).
[CrossRef]

Mater. Struct. (1)

L. Chernin, D. V. Val, and K. Y. Volokh, “Analytical modelling of concrete cover cracking caused by corrosion of reinforcement,” Mater. Struct. 43, 543–556 (2010).

NDT & E Int. (1)

M. Raupach and P. Schiebl, “Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures,” NDT & E Int. 34, 435–442 (2001).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210–223 (2003).
[CrossRef]

Proc. SPIE (2)

K. D. Bennett and L. R. Mclaughlin, “Monitoring of corrosion in steel structures using optical fiber sensors,” Proc. SPIE 2446, 48–59 (1995).
[CrossRef]

J. T. Simen and M. M. Andringa, “Wireless sensors for monitoring corrosion in reinforced concrete members,” Proc. SPIE 5391, 587–596 (2004).
[CrossRef]

Sens. Actuat. A (1)

H.-Y. Liu, D.-K. Liang, and J. Zeng, “Long period fiber grating transverse load effect-based sensor for asphalt pavement pressure field measurements,” Sens. Actuat. A 168, 262–266 (2011).
[CrossRef]

Spectrosc. Spectral Anal. (1)

J. Li, J. Wu, and J. Q. Gao, “Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel,” Spectrosc. Spectral Anal. 30, 283–286 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Damage in a rebar concrete structure.

Fig. 2.
Fig. 2.

Experimental setup of the characteristics of transverse load of the LPFG.

Fig. 3.
Fig. 3.

Variation curve of the resonance amplitude caused by transverse loads.

Fig. 4.
Fig. 4.

Schematic diagram of LPFG steel corrosion sensors based on transverse load.

Fig. 5.
Fig. 5.

Mechanism map of the LPFG steel corrosion sensor.

Fig. 6.
Fig. 6.

Physical map of the LPFG steel corrosion sensing system.

Fig. 7.
Fig. 7.

Schematic of the accelerated corrosion test.

Fig. 8.
Fig. 8.

Physical map of accelerated rebar corrosion test.

Fig. 9.
Fig. 9.

Overall transmission spectra of LPFG at different corrosion days.

Fig. 10.
Fig. 10.

Relationship between amplitude change and corrosion days.

Fig. 11.
Fig. 11.

Physical picture of corroded steel in the first 32, 76, and 120 days.

Fig. 12.
Fig. 12.

Relationship between corrosion rate and corrosion days.

Fig. 13.
Fig. 13.

Relationship between the resonant peak amplitude change and the corrosion rate of rebar.

Fig. 14.
Fig. 14.

Physical displacement of the broken sensing device in the sensing direction after the first 76 days.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ=(nneffconneffcl,m)·Λ,
βf=2πnf/λ,βs=2πns/λ.

Metrics