Abstract

We developed a time-correlated single-photon counting (TCSPC) system based on the low-jitter superconducting nanowire single-photon detection (SNSPD) technology. The causes of jitters in the TCSPC system were analyzed. Owing to the low jitter of the SNSPD technology, a system jitter of 26.8 ps full width at half-maximum was achieved after optimizing the system. We demonstrated time-of-flight laser ranging at 1550 nm wavelength at a standoff distance of 115 m based on this TCSPC system. A depth resolution of 4 mm was achieved directly by locating the centroids of each of the two return signals. Laser imaging was also performed using the TCSPC system. This low-jitter TCSPC system using the SNSPD technology presents great potential in long-range measurements and imaging applications for low-energy-level and eye-safe laser systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Wlillad, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
    [CrossRef]
  2. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and devaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063–1070 (2002).
    [CrossRef]
  3. R. E. Warburton, A. McCarthy, A. M. Wallace, S. H. Marin, S. Cova, R. A. Lamb, and G. S. Buller, “Enhanced performance photon-counting time-of-flight sensor,” Opt. Express 15, 423–429 (2007).
    [CrossRef]
  4. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
    [CrossRef]
  5. For example, the commercial Hamamatsu PMT R3809U-50 can give a timing jitter of 25 ps FWHM for the operation wavelength of 160–850 nm ( http://www.hamamatsu.com/ ).
  6. D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).
  7. R. Richmond, R. Stettner, and J. Glessner, “Eye safe laser radar focal plane array for three-dimensional imaging,” Proc. SPIE 4035, 172–178 (2000).
    [CrossRef]
  8. M. Ren, X. R. Gu, Y. Liang, W. B. Kong, E. Wu, G. Wu, and H. P. Zeng, “Laser ranging at 1550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
    [CrossRef]
  9. M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
    [CrossRef]
  10. A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
    [CrossRef]
  11. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [CrossRef]
  12. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
    [CrossRef]
  13. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [CrossRef]
  14. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266–2268 (2007).
    [CrossRef]
  15. Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
    [CrossRef]
  16. R. A. Lamb, “A technology review of time-of-flight photon counting for advanced remote sensing,” Proc. SPIE 7681, 768107 (2010).
    [CrossRef]
  17. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [CrossRef]
  18. H. Terai, T. Yamashita, S. Miki, K. Makise, and Z. Wang, “Low-jitter single flux quantum signal readout from superconducting single photon detector,” Opt. Express 20, 20115–20123 (2012).
    [CrossRef]
  19. A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).
  20. W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
    [CrossRef]
  21. A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
    [CrossRef]
  22. M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
    [CrossRef]
  23. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
    [CrossRef]
  24. For more details about SPC-130, please refer to http://www.becker-hickl.de/_vti_bin/shtml.exe/handbook.htm .

2013

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
[CrossRef]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

2012

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[CrossRef]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

H. Terai, T. Yamashita, S. Miki, K. Makise, and Z. Wang, “Low-jitter single flux quantum signal readout from superconducting single photon detector,” Opt. Express 20, 20115–20123 (2012).
[CrossRef]

2011

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).

M. Ren, X. R. Gu, Y. Liang, W. B. Kong, E. Wu, G. Wu, and H. P. Zeng, “Laser ranging at 1550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011).
[CrossRef]

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

2010

R. A. Lamb, “A technology review of time-of-flight photon counting for advanced remote sensing,” Proc. SPIE 7681, 768107 (2010).
[CrossRef]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

2009

2008

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

2007

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. H. Marin, S. Cova, R. A. Lamb, and G. S. Buller, “Enhanced performance photon-counting time-of-flight sensor,” Opt. Express 15, 423–429 (2007).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266–2268 (2007).
[CrossRef]

2005

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

2004

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

2002

2000

R. Richmond, R. Stettner, and J. Glessner, “Eye safe laser radar focal plane array for three-dimensional imaging,” Proc. SPIE 4035, 172–178 (2000).
[CrossRef]

Acerbi, F.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[CrossRef]

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Albota, M. A.

Anti, M.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[CrossRef]

Aull, B. F.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Bar, J.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Bohi, P.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Buller, G.

Buller, G. S.

Carlson, R. R.

Cech, M.

D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).

Chen, J.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Chulkova, G.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Claudon, J.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Collins, R. J.

Cova, S.

Cross, A.

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

Cross, A. S.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Currie, M.

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Dauler, E. A.

Divochiy, A.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Entwistle, M.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Fernández, V.

Fouche, D. G.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Gippius, N. A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Glessner, J.

R. Richmond, R. Stettner, and J. Glessner, “Eye safe laser radar focal plane array for three-dimensional imaging,” Proc. SPIE 4035, 172–178 (2000).
[CrossRef]

Gol’tsman, G.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

Gol’tsman, G. N.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Goltsman, G.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

Gorska, M.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Grabiec, P.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Grzecki, M. W.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Gu, X. R.

Hadfield, R. H.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Heinrichs, R. M.

Hernandez-Marin, S.

Hofherr, M.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Hubers, H.-W.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Ilin, K.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Itzler, M. A.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Jelinek, M.

D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).

Jia, T.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Jiang, X.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Kang, L.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Kaurova, N.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Kerman, A. J.

Kitaygorsky, J.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Kocher, D. G.

Komissarov, I.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Kong, W. B.

Korneev, A.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Kouminov, P.

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Krichel, N. J.

Kubecek, V.

D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).

Lamb, R. A.

Latta, C.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Li, M.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

Liang, Y.

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Makise, K.

Marin, S. H.

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Massa, J.

McCarthy, A.

Miki, S.

Milostnaya, I.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Minaeva, O.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Minayeva, O.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Molnar, R. J.

Mooney, J.

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266–2268 (2007).
[CrossRef]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

O’Brien, M. E.

Okunev, O.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Pan, D.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Pearlman, A.

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Pearlman, A. J.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Pernice, W.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

Player, B. E.

Poizat, J. P.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Rall, D.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Ren, M.

Richmond, R.

R. Richmond, R. Stettner, and J. Glessner, “Eye safe laser radar focal plane array for three-dimensional imaging,” Proc. SPIE 4035, 172–178 (2000).
[CrossRef]

Rosenberg, D.

Schuck, C.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

Seleznev, V.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Semenov, A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Semenov, A. V.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Sergienko, A.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Siegel, M.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Slomkowski, K.

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Slysz, W.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Smirnov, K.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Smith, G.

Sobolewski, R.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Stettner, R.

R. Richmond, R. Stettner, and J. Glessner, “Eye safe laser radar focal plane array for three-dimensional imaging,” Proc. SPIE 4035, 172–178 (2000).
[CrossRef]

Tang, H.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

Tarkhov, M.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Terai, H.

Tosi, A.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[CrossRef]

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Umasuthan, M.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Verevkin, A.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Voronov, B.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Vyhlidal, D.

D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).

Walker, A.

Wallace, A.

Wallace, A. M.

Wang, Z.

Warburton, R. E.

Wlillad, B. C.

Wu, E.

Wu, G.

Wu, P.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Xu, W.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Yamashita, T.

Zappa, F.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[CrossRef]

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Zayhowski, J. J.

Zeng, H. P.

Zhang, J.

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

Zhang, L.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Zhao, Q.

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Zwiller, V.

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011).
[CrossRef]

Appl. Phys. Lett.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

IEEE J. Quantum Electron.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[CrossRef]

IEEE Trans. Appl. Supercond.

A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005).
[CrossRef]

J. Appl. Phys.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

J. Mod. Opt.

A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).

W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007).
[CrossRef]

M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011).
[CrossRef]

Nat. Commun.

W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[CrossRef]

Nat. Photonics

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. A. Lamb, “A technology review of time-of-flight photon counting for advanced remote sensing,” Proc. SPIE 7681, 768107 (2010).
[CrossRef]

D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).

R. Richmond, R. Stettner, and J. Glessner, “Eye safe laser radar focal plane array for three-dimensional imaging,” Proc. SPIE 4035, 172–178 (2000).
[CrossRef]

Supercond. Sci. Technol.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

Other

For example, the commercial Hamamatsu PMT R3809U-50 can give a timing jitter of 25 ps FWHM for the operation wavelength of 160–850 nm ( http://www.hamamatsu.com/ ).

For more details about SPC-130, please refer to http://www.becker-hickl.de/_vti_bin/shtml.exe/handbook.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a typical TCSPC system based on SNSPD technology. The dashed lines represent the route of light (red) and the route of the dc bias (black). The blue straight line represents the route of both input dc bias and output response pulse from the SNSPD. ATT, optic attenuator; SYNC, synchronizing signal; AMP, amplifier.

Fig. 2.
Fig. 2.

(a) Measured jitter of our TCSPC system (blue circles) and Gaussian fit curve for it (red solid line). The bias current is set at 0.96 Ic. (b) Dependence of jtotal (blue dots) and jSNSPD (red squares) on Ib. All the jitters are FWHM values.

Fig. 3.
Fig. 3.

Schematic of the laser ranging system based on our optimized TCSPC system that uses the low-jitter SNSPD. M1 and M2, 1 in. (25.4 mm diameter) round protected gold mirrors; M3 and M4, gold-plated mirrors; OBPF, optical bandpass filter (center wavelength: 1550 nm; FWHM: 6.47 nm); f, convex lens with 3 cm focal length; MMF, multimode fiber; SMF, single-mode fiber.

Fig. 4.
Fig. 4.

TCSPC results when the retroreflected mirrors were separated by 10, 4, 3.5, and 3 mm, respectively.

Fig. 5.
Fig. 5.

(a) Photograph of the plaster cast. (b) 3D shaded surface image created by Matlab using data (29×35 pixels) from the TCSPC measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

jtotal=jSNSPD2+jTCSPC2+jlaser2+jsync2,

Metrics