Abstract

An adaptive microlens structure is proposed using two polymer-stabilized blue-phase liquid-crystal layers whose Kerr constant is largely mismatched. This device exhibits several favorable features, such as polarization independence, simple structure, and good parabolic phase profile. Its applications for 2D/3D switchable displays and other photonic devices are emphasized.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  2. C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37, 4125–4127 (2012).
    [CrossRef]
  3. M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” SID Symp. Dig. Tech. Papers 37, 1142–1145 (2006).
    [CrossRef]
  4. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effect of low polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997).
    [CrossRef]
  5. Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technology 8, 650–655 (2012).
    [CrossRef]
  6. L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
    [CrossRef]
  7. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
    [CrossRef]
  8. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
    [CrossRef]
  9. Y. Y. Kao, C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18, 18506–18518 (2010).
    [CrossRef]
  10. Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
    [CrossRef]
  11. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
    [CrossRef]
  12. H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
    [CrossRef]
  13. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
    [CrossRef]
  14. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulators using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).
    [CrossRef]
  15. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
    [CrossRef]
  16. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
    [CrossRef]
  17. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
    [CrossRef]
  18. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue phase liquid crystal,” J. Display Technology 6, 49–51 (2010).
    [CrossRef]
  19. Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
    [CrossRef]
  20. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
    [CrossRef]
  21. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
    [CrossRef]
  22. C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
    [CrossRef]
  23. Y. Li, Y. Liu, Q. Li, and S. T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51, 2568–2572 (2012).
    [CrossRef]
  24. C. H. Lin, Y. Y. Wang, and C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36, 502–504 (2011).
    [CrossRef]
  25. Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystal,” Opt. Express 11, 3080–3086 (2003).
    [CrossRef]
  26. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
    [CrossRef]
  27. H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
    [CrossRef]
  28. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
    [CrossRef]
  29. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
    [CrossRef]

2012 (3)

2011 (7)

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
[CrossRef]

C. H. Lin, Y. Y. Wang, and C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36, 502–504 (2011).
[CrossRef]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
[CrossRef]

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
[CrossRef]

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

2010 (4)

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue phase liquid crystal,” J. Display Technology 6, 49–51 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Y. Y. Kao, C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18, 18506–18518 (2010).
[CrossRef]

2009 (1)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

2007 (1)

2006 (2)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” SID Symp. Dig. Tech. Papers 37, 1142–1145 (2006).
[CrossRef]

2005 (3)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
[CrossRef]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulators using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).
[CrossRef]

2003 (2)

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystal,” Opt. Express 11, 3080–3086 (2003).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

1997 (1)

1996 (2)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

1985 (1)

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
[CrossRef]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Bos, P. J.

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
[CrossRef]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effect of low polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[CrossRef]

Chao, C. P.

Chen, C. W.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technology 8, 650–655 (2012).
[CrossRef]

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37, 4125–4127 (2012).
[CrossRef]

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Chen, K. M.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue phase liquid crystal,” J. Display Technology 6, 49–51 (2010).
[CrossRef]

Chen, Y.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Cheng, H. C.

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Cheng, K. L.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Chien, L. C.

Cho, M.

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Dabrowski, R.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

de Zwart, S. T.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” SID Symp. Dig. Tech. Papers 37, 1142–1145 (2006).
[CrossRef]

Dekker, T.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” SID Symp. Dig. Tech. Papers 37, 1142–1145 (2006).
[CrossRef]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Duston, D.

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
[CrossRef]

Fan, Y. H.

Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystal,” Opt. Express 11, 3080–3086 (2003).
[CrossRef]

Fang, J.

Ferstl, M.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Fox, D.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Frisch, A.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Gauza, S.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue phase liquid crystal,” J. Display Technology 6, 49–51 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Ge, Z.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulators using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).
[CrossRef]

Gerber, P. R.

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
[CrossRef]

Haseba, Y.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

Hiddink, M. G. H.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” SID Symp. Dig. Tech. Papers 37, 1142–1145 (2006).
[CrossRef]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Hsieh, C.-W.

Hsieh, P. J.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Hsueh, C. W.

Huang, Y. C.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technology 8, 650–655 (2012).
[CrossRef]

Huang, Y. P.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technology 8, 650–655 (2012).
[CrossRef]

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37, 4125–4127 (2012).
[CrossRef]

Ishinabe, T.

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

Javidi, B.

Jiao, M.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Kao, Y. Y.

Kikuchi, H.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Lee, C. T.

Li, J.

Li, Q.

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Li, Y.

Liang, X.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
[CrossRef]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Lin, C. H.

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Lin, H. Y.

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulators using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).
[CrossRef]

Liu, S. H.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Liu, Y.

Lu, L.

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
[CrossRef]

Masuda, S.

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Nose, T.

Rao, L.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Ren, H.

Ren, H. W.

Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Sato, S.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effect of low polymer content in a liquid crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Seed, A.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Shi, L.

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
[CrossRef]

Shiu, J. W.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Sun, J.

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

Van Heugten, T.

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
[CrossRef]

Wang, B.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

Wang, H.

Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Wang, Y. Y.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Wen, C. H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Willemsen, O. H.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” SID Symp. Dig. Tech. Papers 37, 1142–1145 (2006).
[CrossRef]

Wu, B.

Wu, S. T.

Y. Li, Y. Liu, Q. Li, and S. T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51, 2568–2572 (2012).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19, 8045–8050 (2011).
[CrossRef]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
[CrossRef]

C. T. Lee, Y. Li, H. Y. Lin, and S. T. Wu, “Design of polarization independent multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19, 17402–17407 (2011).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue phase liquid crystal,” J. Display Technology 6, 49–51 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328–11335 (2007).
[CrossRef]

Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
[CrossRef]

Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, “Polarization-independent liquid crystal phase modulators using a thin polymer-separated double-layered structure,” Opt. Express 13, 8746–8752 (2005).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystal,” Opt. Express 11, 3080–3086 (2003).
[CrossRef]

Wu, Y. H.

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue phase liquid crystal,” J. Display Technology 6, 49–51 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Yamamoto, S.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
[CrossRef]

Yan, J.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Ye, M.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Zhao, Y.

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. 17, 2311–2315 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Y. Chen, J. Yan, J. Sun, S. T. Wu, X. Liang, S. H. Liu, P. J. Hsieh, K. L. Cheng, and J. W. Shiu, “A microsecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 99, 201105 (2011).
[CrossRef]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96, 113505 (2010).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96, 071105 (2010).
[CrossRef]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98, 261102 (2011).
[CrossRef]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98, 081109 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photon. Technol. Lett. 18, 79–81 (2006).
[CrossRef]

J. Display Technology (3)

Y. H. Fan, H. W. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technology 1, 151–156 (2005).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue phase liquid crystal,” J. Display Technology 6, 49–51 (2010).
[CrossRef]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technology 8, 650–655 (2012).
[CrossRef]

J. Mod. Opt. (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43, 1451–1462 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).
[CrossRef]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

SID Symp. Dig. Tech. Papers (2)

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” SID Symp. Dig. Tech. Papers 37, 1142–1145 (2006).
[CrossRef]

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Symp. Dig. Tech. Papers 42, 171–174 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Side view of the proposed adaptive BPLC lens.

Fig. 2.
Fig. 2.

VT curves of BPLC samples: black solid curve for sample I, red dashed curve for sample II, and blue dashed–dotted curve for the JNC sample.

Fig. 3.
Fig. 3.

Cross-section view of BPLC layers: green convex region is sample I and yellow concave region is sample II. Black lines are equal potential lines.

Fig. 4.
Fig. 4.

Phase profiles of the proposed adaptive lens (a) using the HTG samples at 30Vrms, 50Vrms, and 100Vrms and (b) using glass to replace BPLC-1, driven at 100Vrms. Black solid curves are for the o-wave, blue dashed curves are for the e-wave, and red dotted curves are ideal parabolic shapes.

Fig. 5.
Fig. 5.

Voltage-dependent focal length of the BPLC samples: black solid line represents the focal lengths for o- and e-waves using HTG materials, and the blue dotted lines represent JNC materials.

Tables (1)

Tables Icon

Table 1. Recipes of the Employed BPLC Mixtures

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δnind(E)=Δns(1exp((E/Es)2)),
K=Δns/(λEs2).

Metrics