Abstract

We present the dispersion characteristics of 18 liquids and one resin, which are widely used as media for liquid lenses in adaptive and tunable optics and for index matching in spectrochemical analysis. These are measured by using a refractometer operating at six different wavelengths. We provide a short description of the measurement setup and present a detailed uncertainty analysis of the measurement system to provide a measure of the reliability of the data. We conclude with a catalog of refractive indices and Sellmeier coefficients of the measured liquids and show the location of the analyzed materials in an Abbe diagram.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
    [CrossRef]
  2. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
    [CrossRef]
  3. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
    [CrossRef]
  4. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.
  5. B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–135 (2005).
  6. M. Wiemann, N. Willenbacher, and E. Bartsch, “Effect of cross-link density on re-entrant melting of microgel colloids,” Colloids Surf. A 413, 78–83 (2012).
    [CrossRef]
  7. P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21, 1156–1164 (2012).
    [CrossRef]
  8. D. R. Lide, ed., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 89th ed. (CRC Press, 2008).
  9. M. J. Weber, Handbook of Optical Materials, The CRC Press Laser and Optical Science and Technology Series (CRC Press, 2003).
  10. R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002).
    [CrossRef]
  11. M. Boyer-Donzelot and J. Barriol, “Analysis of experimental data in the optical dispersion of organic liquids,” Bull. Soc. Chim. Fr. Pt. 1, 2972–2976 (1973).
  12. A. F. Forziati, “Refractive index as a function of wavelength for sixty API-NBS hydrocarbons,” J. Res. Natl. Bur. Stand. 44, 373–385 (1950).
    [CrossRef]
  13. E. Moreels, C. de Greef, and R. Finsy, “Laser light refractometer,” Appl. Opt. 23, 3010–3013 (1984).
    [CrossRef]
  14. S. K. Mitra, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57, 1798–1799 (1972).
    [CrossRef]
  15. I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
    [CrossRef]
  16. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
    [CrossRef]
  17. R. T. Davis and R. W. Schiessler, “Optical dispersion of perdeuterobenzene and perdeuterocyclohexane,” J. Am. Chem. Soc. 75, 2763–2764 (1953).
    [CrossRef]
  18. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt. 22, 3070–3072 (1983).
    [CrossRef]
  19. J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
    [CrossRef]
  20. J. P. Wibaut and S. L. Langedijk, “Physical constants of a number of alkanes and cycloalkanes. II. Additive and constitutional influences on molecular refraction, dispersion and parachor,” Recl. Trav. Chim. Pays-Bas Belg. 59, 1220–1251 (1940).
    [CrossRef]
  21. J. P. Wibaut, K. van Nes, and J. Stofberg, “Synthesis and physical constants of some 2-n-alkylnaphthalenes,” Recl. Trav. Chim. Pays-Bas Belg. 73, 501–512 (1954).
    [CrossRef]
  22. A. F. Forziati, D. L. Camin, and F. D. Rossini, “Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,” J. Res. Natl. Bur. Stand. 45, 406–410 (1950).
    [CrossRef]
  23. K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities for methanol solutions of benzene, toluene, aniline, and phenol,” J. Chem. Eng. Data 12, 489–493(1967).
    [CrossRef]
  24. K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities of benzene, toluene, and xylene mixtures,” J. Chem. Eng. Data 13, 30–34 (1968).
    [CrossRef]
  25. J. Räty, E. Keränen, and K. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV-visible spectral range,” Meas. Sci. Technol. 9, 95–99 (1998).
    [CrossRef]
  26. J. Räty and K.-E. Peiponen, “Measurement of refractive index of liquids using s- and p-polarized light,” Meas. Sci. Technol. 11, 74–76 (2000).
    [CrossRef]
  27. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
    [CrossRef]
  28. A. S. Andrushchak and B. G. Mytsyk, “Measurement of refractive indices of isotropic and crystalline materials using an interferometric method,” Meas. Tech. 35, 816–819(1992).
    [CrossRef]
  29. S. A. Alexandrov and I. V. Chernyh, “Interference method for determination of the refractive index and thickness,” Opt. Eng. 39, 2480–2486 (2000).
    [CrossRef]
  30. J. D. Olson, “Direct determination of temperature dependence of refractive index of liquids,” J. Chem. Phys. 58, 2321–2325 (1973).
    [CrossRef]
  31. M. Boyer-Donzelot and J. Barriol, “Interpretation of the experimental optical dispersion data of organic substances,” C. R. Seances Acad. Sci. Ser. C T273, 1085–1087 (1973).
  32. K. T. Tang, “One-term Sellmeier formula for dispersion of dilute gases,” J. Opt. Soc. Am. 62, 644–648 (1972).
    [CrossRef]
  33. B. W. Morrissey and C. J. Powell, “Interpolation of refractive index data,” Appl. Opt. 12, 1588–1591 (1973).
    [CrossRef]
  34. E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys. 73, 611–614 (2005).
    [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, corrected 6th ed. (Pergamon, 1984).
  36. W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. Phys. 219, 272–282 (1871).
    [CrossRef]
  37. P. Drude, “Optische Eigenschaften und Elektronentheorie,” Ann. Phys. 319, 677–725 (1904).
    [CrossRef]
  38. W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, “Fundamental optical properties of materials I,” in Optical Properties of Condensed Matter and Applications, J. Singh, ed., 1st ed.(Wiley, 2006), Chap. 1, pp. 1–23.
  39. M. Bass, E. W. van Stryland, D. R. Williams, and W. L. Wolfe, eds., Handbook of Optics, Volume II: Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, 1995).
  40. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).
  41. E. Jones, T. Oliphant, and P. Peterson, “SciPy: open source scientific tools for Python” (to be published).
  42. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984).
    [CrossRef]
  43. A. G. Schott, “Schott glass collection datasheets” (2011).
  44. W. E. Forsythe, Smithsonian Physical Tables, 9th ed.(Smithsonian Institution, 1954).
  45. J. R. Partington, An Advanced Treatise on Physical Chemistry, 1st ed. (Longmans, 1954).
  46. Huntsman, “Araldite 2020 data sheet” (2004).
  47. J. E. Geake, C. S. Mill, and M. S. Mohammadi, “A linear differentiating refractometer,” Meas. Sci. Technol. 5, 531–539 (1994).
    [CrossRef]
  48. S. W. George and J. A. Campbell, “Refractive indices of some carbon compounds as a function of temperature,” J. Chem. Educ. 44, 393 (1967).
    [CrossRef]

2012

M. Wiemann, N. Willenbacher, and E. Bartsch, “Effect of cross-link density on re-entrant melting of microgel colloids,” Colloids Surf. A 413, 78–83 (2012).
[CrossRef]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21, 1156–1164 (2012).
[CrossRef]

2011

2007

2006

F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

2005

B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–135 (2005).

E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys. 73, 611–614 (2005).
[CrossRef]

2003

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[CrossRef]

2002

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002).
[CrossRef]

2000

J. Räty and K.-E. Peiponen, “Measurement of refractive index of liquids using s- and p-polarized light,” Meas. Sci. Technol. 11, 74–76 (2000).
[CrossRef]

S. A. Alexandrov and I. V. Chernyh, “Interference method for determination of the refractive index and thickness,” Opt. Eng. 39, 2480–2486 (2000).
[CrossRef]

1998

J. Räty, E. Keränen, and K. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV-visible spectral range,” Meas. Sci. Technol. 9, 95–99 (1998).
[CrossRef]

1994

J. E. Geake, C. S. Mill, and M. S. Mohammadi, “A linear differentiating refractometer,” Meas. Sci. Technol. 5, 531–539 (1994).
[CrossRef]

1992

A. S. Andrushchak and B. G. Mytsyk, “Measurement of refractive indices of isotropic and crystalline materials using an interferometric method,” Meas. Tech. 35, 816–819(1992).
[CrossRef]

1985

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

1984

1983

1973

J. D. Olson, “Direct determination of temperature dependence of refractive index of liquids,” J. Chem. Phys. 58, 2321–2325 (1973).
[CrossRef]

M. Boyer-Donzelot and J. Barriol, “Interpretation of the experimental optical dispersion data of organic substances,” C. R. Seances Acad. Sci. Ser. C T273, 1085–1087 (1973).

B. W. Morrissey and C. J. Powell, “Interpolation of refractive index data,” Appl. Opt. 12, 1588–1591 (1973).
[CrossRef]

1972

K. T. Tang, “One-term Sellmeier formula for dispersion of dilute gases,” J. Opt. Soc. Am. 62, 644–648 (1972).
[CrossRef]

S. K. Mitra, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57, 1798–1799 (1972).
[CrossRef]

1968

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities of benzene, toluene, and xylene mixtures,” J. Chem. Eng. Data 13, 30–34 (1968).
[CrossRef]

1967

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities for methanol solutions of benzene, toluene, aniline, and phenol,” J. Chem. Eng. Data 12, 489–493(1967).
[CrossRef]

S. W. George and J. A. Campbell, “Refractive indices of some carbon compounds as a function of temperature,” J. Chem. Educ. 44, 393 (1967).
[CrossRef]

1954

J. P. Wibaut, K. van Nes, and J. Stofberg, “Synthesis and physical constants of some 2-n-alkylnaphthalenes,” Recl. Trav. Chim. Pays-Bas Belg. 73, 501–512 (1954).
[CrossRef]

1953

R. T. Davis and R. W. Schiessler, “Optical dispersion of perdeuterobenzene and perdeuterocyclohexane,” J. Am. Chem. Soc. 75, 2763–2764 (1953).
[CrossRef]

1950

A. F. Forziati, “Refractive index as a function of wavelength for sixty API-NBS hydrocarbons,” J. Res. Natl. Bur. Stand. 44, 373–385 (1950).
[CrossRef]

A. F. Forziati, D. L. Camin, and F. D. Rossini, “Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,” J. Res. Natl. Bur. Stand. 45, 406–410 (1950).
[CrossRef]

1940

J. P. Wibaut and S. L. Langedijk, “Physical constants of a number of alkanes and cycloalkanes. II. Additive and constitutional influences on molecular refraction, dispersion and parachor,” Recl. Trav. Chim. Pays-Bas Belg. 59, 1220–1251 (1940).
[CrossRef]

1939

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

1904

P. Drude, “Optische Eigenschaften und Elektronentheorie,” Ann. Phys. 319, 677–725 (1904).
[CrossRef]

1871

W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. Phys. 219, 272–282 (1871).
[CrossRef]

Alexandrov, S. A.

S. A. Alexandrov and I. V. Chernyh, “Interference method for determination of the refractive index and thickness,” Opt. Eng. 39, 2480–2486 (2000).
[CrossRef]

Andrushchak, A. S.

A. S. Andrushchak and B. G. Mytsyk, “Measurement of refractive indices of isotropic and crystalline materials using an interferometric method,” Meas. Tech. 35, 816–819(1992).
[CrossRef]

Barriol, J.

M. Boyer-Donzelot and J. Barriol, “Interpretation of the experimental optical dispersion data of organic substances,” C. R. Seances Acad. Sci. Ser. C T273, 1085–1087 (1973).

M. Boyer-Donzelot and J. Barriol, “Analysis of experimental data in the optical dispersion of organic liquids,” Bull. Soc. Chim. Fr. Pt. 1, 2972–2976 (1973).

Bartsch, E.

M. Wiemann, N. Willenbacher, and E. Bartsch, “Effect of cross-link density on re-entrant melting of microgel colloids,” Colloids Surf. A 413, 78–83 (2012).
[CrossRef]

Benninga, N.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Berge, B.

F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–135 (2005).

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, corrected 6th ed. (Pergamon, 1984).

Bouman, G. P.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Boyer-Donzelot, M.

M. Boyer-Donzelot and J. Barriol, “Interpretation of the experimental optical dispersion data of organic substances,” C. R. Seances Acad. Sci. Ser. C T273, 1085–1087 (1973).

M. Boyer-Donzelot and J. Barriol, “Analysis of experimental data in the optical dispersion of organic liquids,” Bull. Soc. Chim. Fr. Pt. 1, 2972–2976 (1973).

Brauer, A.

F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Camin, D. L.

A. F. Forziati, D. L. Camin, and F. D. Rossini, “Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,” J. Res. Natl. Bur. Stand. 45, 406–410 (1950).
[CrossRef]

Campbell, J. A.

S. W. George and J. A. Campbell, “Refractive indices of some carbon compounds as a function of temperature,” J. Chem. Educ. 44, 393 (1967).
[CrossRef]

Chernyh, I. V.

S. A. Alexandrov and I. V. Chernyh, “Interference method for determination of the refractive index and thickness,” Opt. Eng. 39, 2480–2486 (2000).
[CrossRef]

Cooper, P. R.

Daimon, M.

Davis, R. T.

R. T. Davis and R. W. Schiessler, “Optical dispersion of perdeuterobenzene and perdeuterocyclohexane,” J. Am. Chem. Soc. 75, 2763–2764 (1953).
[CrossRef]

de Greef, C.

Drude, P.

P. Drude, “Optische Eigenschaften und Elektronentheorie,” Ann. Phys. 319, 677–725 (1904).
[CrossRef]

Feuerstein, R.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21, 1156–1164 (2012).
[CrossRef]

Finsy, R.

Fischer, R. X.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002).
[CrossRef]

Forsythe, W. E.

W. E. Forsythe, Smithsonian Physical Tables, 9th ed.(Smithsonian Institution, 1954).

Forziati, A. F.

A. F. Forziati, “Refractive index as a function of wavelength for sixty API-NBS hydrocarbons,” J. Res. Natl. Bur. Stand. 44, 373–385 (1950).
[CrossRef]

A. F. Forziati, D. L. Camin, and F. D. Rossini, “Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,” J. Res. Natl. Bur. Stand. 45, 406–410 (1950).
[CrossRef]

Gaade, W.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Geake, J. E.

J. E. Geake, C. S. Mill, and M. S. Mohammadi, “A linear differentiating refractometer,” Meas. Sci. Technol. 5, 531–539 (1994).
[CrossRef]

Geldof, H.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

George, S. W.

S. W. George and J. A. Campbell, “Refractive indices of some carbon compounds as a function of temperature,” J. Chem. Educ. 44, 393 (1967).
[CrossRef]

Grigull, U.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Hockamann, J. T.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Hoog, H.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Jones, E.

E. Jones, T. Oliphant, and P. Peterson, “SciPy: open source scientific tools for Python” (to be published).

Jonker, E. W.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Kasap, S. O.

W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, “Fundamental optical properties of materials I,” in Optical Properties of Condensed Matter and Applications, J. Singh, ed., 1st ed.(Wiley, 2006), Chap. 1, pp. 1–23.

Keränen, E.

J. Räty, E. Keränen, and K. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV-visible spectral range,” Meas. Sci. Technol. 9, 95–99 (1998).
[CrossRef]

Koughia, K.

W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, “Fundamental optical properties of materials I,” in Optical Properties of Condensed Matter and Applications, J. Singh, ed., 1st ed.(Wiley, 2006), Chap. 1, pp. 1–23.

Langedijk, S. L.

J. P. Wibaut and S. L. Langedijk, “Physical constants of a number of alkanes and cycloalkanes. II. Additive and constitutional influences on molecular refraction, dispersion and parachor,” Recl. Trav. Chim. Pays-Bas Belg. 59, 1220–1251 (1940).
[CrossRef]

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Liebetraut, P.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.

Mader, D.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.

Masumura, A.

Medenbach, O.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002).
[CrossRef]

Mill, C. S.

J. E. Geake, C. S. Mill, and M. S. Mohammadi, “A linear differentiating refractometer,” Meas. Sci. Technol. 5, 531–539 (1994).
[CrossRef]

Mitra, S. K.

S. K. Mitra, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57, 1798–1799 (1972).
[CrossRef]

Mohammadi, M. S.

J. E. Geake, C. S. Mill, and M. S. Mohammadi, “A linear differentiating refractometer,” Meas. Sci. Technol. 5, 531–539 (1994).
[CrossRef]

Moreels, E.

Morrissey, B. W.

Müller, P.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21, 1156–1164 (2012).
[CrossRef]

Mytsyk, B. G.

A. S. Andrushchak and B. G. Mytsyk, “Measurement of refractive indices of isotropic and crystalline materials using an interferometric method,” Meas. Tech. 35, 816–819(1992).
[CrossRef]

Oliphant, T.

E. Jones, T. Oliphant, and P. Peterson, “SciPy: open source scientific tools for Python” (to be published).

Olson, J. D.

J. D. Olson, “Direct determination of temperature dependence of refractive index of liquids,” J. Chem. Phys. 58, 2321–2325 (1973).
[CrossRef]

Overhoff, J.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Paap, T.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Partington, J. R.

J. R. Partington, An Advanced Treatise on Physical Chemistry, 1st ed. (Longmans, 1954).

Peiponen, K.

J. Räty, E. Keränen, and K. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV-visible spectral range,” Meas. Sci. Technol. 9, 95–99 (1998).
[CrossRef]

Peiponen, K.-E.

J. Räty and K.-E. Peiponen, “Measurement of refractive index of liquids using s- and p-polarized light,” Meas. Sci. Technol. 11, 74–76 (2000).
[CrossRef]

Peterson, P.

E. Jones, T. Oliphant, and P. Peterson, “SciPy: open source scientific tools for Python” (to be published).

Powell, C. J.

Räty, J.

J. Räty and K.-E. Peiponen, “Measurement of refractive index of liquids using s- and p-polarized light,” Meas. Sci. Technol. 11, 74–76 (2000).
[CrossRef]

J. Räty, E. Keränen, and K. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV-visible spectral range,” Meas. Sci. Technol. 9, 95–99 (1998).
[CrossRef]

Reichelt, S.

Rossini, F. D.

A. F. Forziati, D. L. Camin, and F. D. Rossini, “Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,” J. Res. Natl. Bur. Stand. 45, 406–410 (1950).
[CrossRef]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[CrossRef]

Schiessler, R. W.

R. T. Davis and R. W. Schiessler, “Optical dispersion of perdeuterobenzene and perdeuterocyclohexane,” J. Am. Chem. Soc. 75, 2763–2764 (1953).
[CrossRef]

Schott, A. G.

A. G. Schott, “Schott glass collection datasheets” (2011).

Schreiber, P.

F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Seifert, A.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.

Sellmeier, W.

W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. Phys. 219, 272–282 (1871).
[CrossRef]

Shannon, R. C.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002).
[CrossRef]

Shannon, R. D.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002).
[CrossRef]

Singh, J.

W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, “Fundamental optical properties of materials I,” in Optical Properties of Condensed Matter and Applications, J. Singh, ed., 1st ed.(Wiley, 2006), Chap. 1, pp. 1–23.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).

Smittenberg, J.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Stofberg, J.

J. P. Wibaut, K. van Nes, and J. Stofberg, “Synthesis and physical constants of some 2-n-alkylnaphthalenes,” Recl. Trav. Chim. Pays-Bas Belg. 73, 501–512 (1954).
[CrossRef]

Straub, J.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

Sumer, K. M.

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities of benzene, toluene, and xylene mixtures,” J. Chem. Eng. Data 13, 30–34 (1968).
[CrossRef]

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities for methanol solutions of benzene, toluene, aniline, and phenol,” J. Chem. Eng. Data 12, 489–493(1967).
[CrossRef]

Tan, W. C.

W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, “Fundamental optical properties of materials I,” in Optical Properties of Condensed Matter and Applications, J. Singh, ed., 1st ed.(Wiley, 2006), Chap. 1, pp. 1–23.

Tang, K. T.

Tatian, B.

Thompson, A. R.

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities of benzene, toluene, and xylene mixtures,” J. Chem. Eng. Data 13, 30–34 (1968).
[CrossRef]

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities for methanol solutions of benzene, toluene, aniline, and phenol,” J. Chem. Eng. Data 12, 489–493(1967).
[CrossRef]

Thormählen, I.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

van Dijk, H.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Van Keuren, E. R.

E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys. 73, 611–614 (2005).
[CrossRef]

van Nes, K.

J. P. Wibaut, K. van Nes, and J. Stofberg, “Synthesis and physical constants of some 2-n-alkylnaphthalenes,” Recl. Trav. Chim. Pays-Bas Belg. 73, 501–512 (1954).
[CrossRef]

Waibel, P.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials, The CRC Press Laser and Optical Science and Technology Series (CRC Press, 2003).

Wibaut, J. P.

J. P. Wibaut, K. van Nes, and J. Stofberg, “Synthesis and physical constants of some 2-n-alkylnaphthalenes,” Recl. Trav. Chim. Pays-Bas Belg. 73, 501–512 (1954).
[CrossRef]

J. P. Wibaut and S. L. Langedijk, “Physical constants of a number of alkanes and cycloalkanes. II. Additive and constitutional influences on molecular refraction, dispersion and parachor,” Recl. Trav. Chim. Pays-Bas Belg. 59, 1220–1251 (1940).
[CrossRef]

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Wiemann, M.

M. Wiemann, N. Willenbacher, and E. Bartsch, “Effect of cross-link density on re-entrant melting of microgel colloids,” Colloids Surf. A 413, 78–83 (2012).
[CrossRef]

Willenbacher, N.

M. Wiemann, N. Willenbacher, and E. Bartsch, “Effect of cross-link density on re-entrant melting of microgel colloids,” Colloids Surf. A 413, 78–83 (2012).
[CrossRef]

Wippermann, F. C.

F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, corrected 6th ed. (Pergamon, 1984).

Zappe, H.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21, 1156–1164 (2012).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express 19, 18584–18592 (2011).
[CrossRef]

S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.

Zuiderweg, F. J.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

Am. J. Phys.

E. R. Van Keuren, “Refractive index measurement using total internal reflection,” Am. J. Phys. 73, 611–614 (2005).
[CrossRef]

Ann. Phys.

W. Sellmeier, “Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen,” Ann. Phys. 219, 272–282 (1871).
[CrossRef]

P. Drude, “Optische Eigenschaften und Elektronentheorie,” Ann. Phys. 319, 677–725 (1904).
[CrossRef]

Appl. Opt.

C. R. Seances Acad. Sci. Ser. C

M. Boyer-Donzelot and J. Barriol, “Interpretation of the experimental optical dispersion data of organic substances,” C. R. Seances Acad. Sci. Ser. C T273, 1085–1087 (1973).

Colloids Surf. A

M. Wiemann, N. Willenbacher, and E. Bartsch, “Effect of cross-link density on re-entrant melting of microgel colloids,” Colloids Surf. A 413, 78–83 (2012).
[CrossRef]

J. Am. Chem. Soc.

R. T. Davis and R. W. Schiessler, “Optical dispersion of perdeuterobenzene and perdeuterocyclohexane,” J. Am. Chem. Soc. 75, 2763–2764 (1953).
[CrossRef]

J. Appl. Phys.

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[CrossRef]

J. Chem. Educ.

S. W. George and J. A. Campbell, “Refractive indices of some carbon compounds as a function of temperature,” J. Chem. Educ. 44, 393 (1967).
[CrossRef]

J. Chem. Eng. Data

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities for methanol solutions of benzene, toluene, aniline, and phenol,” J. Chem. Eng. Data 12, 489–493(1967).
[CrossRef]

K. M. Sumer and A. R. Thompson, “Refraction, dispersion, and densities of benzene, toluene, and xylene mixtures,” J. Chem. Eng. Data 13, 30–34 (1968).
[CrossRef]

J. Chem. Phys.

J. D. Olson, “Direct determination of temperature dependence of refractive index of liquids,” J. Chem. Phys. 58, 2321–2325 (1973).
[CrossRef]

S. K. Mitra, “Temperature dependence of the refractive index of water,” J. Chem. Phys. 57, 1798–1799 (1972).
[CrossRef]

J. Microelectromech. Syst.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21, 1156–1164 (2012).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem. Ref. Data

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14, 933–945 (1985).
[CrossRef]

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive index and dispersion of fluorides and oxides,” J. Phys. Chem. Ref. Data 31, 931–969 (2002).
[CrossRef]

J. Res. Natl. Bur. Stand.

A. F. Forziati, “Refractive index as a function of wavelength for sixty API-NBS hydrocarbons,” J. Res. Natl. Bur. Stand. 44, 373–385 (1950).
[CrossRef]

A. F. Forziati, D. L. Camin, and F. D. Rossini, “Density, refractive index, boiling point, and vapor pressure of eight monoolefin (1-alkene), six pentadiene, and two cyclomonoolefin hydrocarbons,” J. Res. Natl. Bur. Stand. 45, 406–410 (1950).
[CrossRef]

Meas. Sci. Technol.

J. Räty, E. Keränen, and K. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV-visible spectral range,” Meas. Sci. Technol. 9, 95–99 (1998).
[CrossRef]

J. Räty and K.-E. Peiponen, “Measurement of refractive index of liquids using s- and p-polarized light,” Meas. Sci. Technol. 11, 74–76 (2000).
[CrossRef]

J. E. Geake, C. S. Mill, and M. S. Mohammadi, “A linear differentiating refractometer,” Meas. Sci. Technol. 5, 531–539 (1994).
[CrossRef]

Meas. Tech.

A. S. Andrushchak and B. G. Mytsyk, “Measurement of refractive indices of isotropic and crystalline materials using an interferometric method,” Meas. Tech. 35, 816–819(1992).
[CrossRef]

Nikkei Electron.

B. Berge, “No moving parts, liquid lens capability realization soon for mass production,” Nikkei Electron. 911, 129–135 (2005).

Opt. Eng.

S. A. Alexandrov and I. V. Chernyh, “Interference method for determination of the refractive index and thickness,” Opt. Eng. 39, 2480–2486 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

F. C. Wippermann, P. Schreiber, A. Brauer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Recl. Trav. Chim. Pays-Bas Belg.

J. P. Wibaut, H. Hoog, S. L. Langedijk, J. Overhoff, J. Smittenberg, N. Benninga, G. P. Bouman, H. van Dijk, W. Gaade, H. Geldof, J. T. Hockamann, E. W. Jonker, T. Paap, and F. J. Zuiderweg, “Preparation and physical constants of a number of alkanes and cycloalkanes,” Recl. Trav. Chim. Pays-Bas Belg. 58, 329–377 (1939).
[CrossRef]

J. P. Wibaut and S. L. Langedijk, “Physical constants of a number of alkanes and cycloalkanes. II. Additive and constitutional influences on molecular refraction, dispersion and parachor,” Recl. Trav. Chim. Pays-Bas Belg. 59, 1220–1251 (1940).
[CrossRef]

J. P. Wibaut, K. van Nes, and J. Stofberg, “Synthesis and physical constants of some 2-n-alkylnaphthalenes,” Recl. Trav. Chim. Pays-Bas Belg. 73, 501–512 (1954).
[CrossRef]

Other

M. Boyer-Donzelot and J. Barriol, “Analysis of experimental data in the optical dispersion of organic liquids,” Bull. Soc. Chim. Fr. Pt. 1, 2972–2976 (1973).

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in MEMS 2011 (IEEE, 2011), pp. 728–731.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 89th ed. (CRC Press, 2008).

M. J. Weber, Handbook of Optical Materials, The CRC Press Laser and Optical Science and Technology Series (CRC Press, 2003).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, corrected 6th ed. (Pergamon, 1984).

A. G. Schott, “Schott glass collection datasheets” (2011).

W. E. Forsythe, Smithsonian Physical Tables, 9th ed.(Smithsonian Institution, 1954).

J. R. Partington, An Advanced Treatise on Physical Chemistry, 1st ed. (Longmans, 1954).

Huntsman, “Araldite 2020 data sheet” (2004).

W. C. Tan, K. Koughia, J. Singh, and S. O. Kasap, “Fundamental optical properties of materials I,” in Optical Properties of Condensed Matter and Applications, J. Singh, ed., 1st ed.(Wiley, 2006), Chap. 1, pp. 1–23.

M. Bass, E. W. van Stryland, D. R. Williams, and W. L. Wolfe, eds., Handbook of Optics, Volume II: Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, 1995).

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).

E. Jones, T. Oliphant, and P. Peterson, “SciPy: open source scientific tools for Python” (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the beam path of the refractometer setup; beam diameter approximately 1 mm. (b) Detail of the prism holder and the cavity for filling the measurand. For the exact wavelengths see Table 3.

Fig. 2.
Fig. 2.

(a) Reflectivity of s- and p-polarized light for N-BK7/air interface at 589 nm. (b) Orientation of s- and p-polarized light with respect to the plane of incidence with same color coding as in subfigure (a). (c) Geometry of the employed prism for measuring the refractive index, tracing incident and outgoing beam (rays are permutable).

Fig. 3.
Fig. 3.

Reflectivity for a liquid with n=1.46 (for example n-decane) calculated for N-SF66 glass prism (left) and N-SF15 glass prism (right) for s- and p-polarized light, respectively. The angles are measured with respect to normal incidence (0°) while rotating the prism counterclockwise.

Fig. 4.
Fig. 4.

(a) Error contribution of an uncertainty in the wavelength for an interval of 4 nm at a central wavelength of 589 nm (sodium D-line). (b) Correlation between measured angle θout and accuracy of the refractive index. The error of the refractive index is represented per milliradian angular error for three different prisms. The typical angular error is 0.1° 1.5mrad.

Fig. 5.
Fig. 5.

(a) Graph of the experimentally obtained dispersion of toluene showing the location of the wavelengths used to calculate the Abbe number. (b) Error of the Abbe number versus Δne=nFnC according to Eq. (15).

Fig. 6.
Fig. 6.

Comparison of measured refractive index data and Sellmeier fits with reference values [8] for (a) water using a N-SF15 glass prism and (b) for toluene using a N-SF66 glass prism. The blue and red dots are measured values. The shaded areas in each subfigure depict the uncertainty of ±3σ, where σ is the standard deviation resulting from the least squares fit to Eq. (7). νd and νe are the Abbe numbers according to Eq. (8); C1 and C2 are the Sellmeier coefficients according to Eq. (7).

Fig. 7.
Fig. 7.

Comparison of two independent measurements for toluene using two different kinds of prisms: N-SF66 (red circles) and N-SF15 (green squares). The shaded areas depict an uncertainty of ±3σ, where σ is the standard deviation resulting from the least squares fit to Eq. (7). The insets show the resulting coefficients and Abbe numbers for each measurement.

Fig. 8.
Fig. 8.

Abbe diagram of the measured liquids (orange squares); data from the Schott glass catalog have been added (blue circles) for reference. Numbers in upper panel correspond to Table 6. Labels: 2-EN, 2-ethylnaphthalene; DMSO, dimethylsulfoxide; THF, tetrahydrofurane; PDMS, poly(dimethylsiloxane); PMPS, poly(methylphenylsiloxane).

Tables (7)

Tables Icon

Table 1. Summary of Literature on the Optical Dispersion of Liquids and Solidsa

Tables Icon

Table 2. Wavelengths of the Fraunhofer Lines for Calculating the Abbe Numbers [8]

Tables Icon

Table 3. Overview of the Laser Diodes Used and Their Respective Emitting Wavelengthsa

Tables Icon

Table 4. Sellmeier Coefficients of the Prism Glasses Used [43]a

Tables Icon

Table 5. Comparison of the Measured Refractive Index of Toluene with Data from the Literaturea

Tables Icon

Table 6. Refractive Indices of Analyzed Liquids at Measured Wavelengths and Corresponding Sellmeier Coefficients

Tables Icon

Table 7. Refractive Indices of Analyzed Liquids at Specific Fraunhofer Wavelengths and the Corresponding Abbe Number

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

nliquid=nprismsin(θcrliquid)
nliquid=nprismsin(π4+θ2).
nliquid=nprismsin{π4+arcsin[nairnprismsin(θout)]}.
θrefair=arcsin{nprismnairsin[π4arcsin(nairnprism)]}.
θout=θcrliquidθcrairobtained by experiment+θrefair,
n2=1+i=1N[Biλ2λ2Ci]
n2=1+B1λ2λ2C1
νd=nd1nFnCandνe=ne1nFnC.
Δnliquid=|nθout|δθout+|nnprism|δnprism+|nnair|δnair.
limθout0|nnprism|δnprism=12δnprism.
Δn(θout)=|nθout|δθout=|naircos(θout)cos(sin1[nairnprismsin(θout)]+π4)[1nair2nprism2sin2(θout)]1/2|δθout,
Δn2=[(n2B1δB1)2+(n2C1δC1)2+(n2λδλ)2]1/2.
Δn=12[(λ2λ2C1)2δB12+(B1λ2λ2C12)2δC12](1+B1λ2λ2C1)1/2.
Δνe=[(νeneδne)2+(νenFδnF)2+(νenCδnC)2].
Δνe=2|ne1(nFnC)2|δn,

Metrics