Abstract

A fluid-filled two-mode photonic crystal fiber (PCF)-based intermodal interferometer and its sensing characteristics are demonstrated and investigated. The interferometer works from the interference between LP01 and LP11 core modes of the fluid-filled PCF. Solutions to enhance the temperature sensitivity of the interferometer are also discussed. Via choosing a higher fluid-filled length ratio of PCF, a sensitivity of more than 340pm/°C at 1480 nm is achieved, which is the highest value for a PCF intermodal interferometer-based sensor, to our best knowledge. Furthermore, there exist significant differences in temperature and strain sensitivity for two different interference dips, thus the interferometer can be used as a dual-parameter sensor with a compact structure through matrix demodulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17, 21551–21559 (2009).
    [CrossRef]
  2. B. Dong and E. J. Hao, “Core-offset hollow core photonic bandgap fiber-based intermodal interferometer for strain and temperature measurements,” Appl. Opt. 50, 3011–3014 (2011).
    [CrossRef]
  3. S.-j. Qiu, Y. Chen, F. Xu, and Y.-q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37, 863–865 (2012).
    [CrossRef]
  4. K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37, 1373–1375 (2012).
    [CrossRef]
  5. V. P. Minkovich, J. Villatoro, D. M. Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609–7614 (2005).
    [CrossRef]
  6. S.-j. Qiu, Y. Chen, J.-l. Kou, F. Xu, and Y.-q. Lu, “Miniture tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching,” Appl. Opt. 50, 4328–4332 (2011).
    [CrossRef]
  7. B. Dong and E. J. Hao, “Temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber modal-interferometer-based microdisplacement sensor,” J. Opt. Soc. Am. B 28, 2332–2336 (2011).
    [CrossRef]
  8. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29, 1136–1140 (2012).
    [CrossRef]
  9. J. Mathew, Y. Semenova, and G. Farrel, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30, 1150–1155 (2012).
    [CrossRef]
  10. Z. Sun, Y.-g. Liu, Z. Wang, B. Tai, T. Han, B. Liu, W. Cui, H. Wei, and W. Tong, “Long period grating assistant photonic crystal fiber modal interferometer,” Opt. Express 19, 12913–12918 (2011).
    [CrossRef]
  11. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33, 812–814 (2008).
    [CrossRef]
  12. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-micro-structured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15, 1491–1496 (2007).
    [CrossRef]
  13. X. Zheng, Y.-g. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100, 141104 (2012).
    [CrossRef]
  14. T. Han, Y.-g. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express 21, 122–128(2013).
    [CrossRef]
  15. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
    [CrossRef]
  16. T. Han, Y.-g. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry–Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20, 13320–13325 (2012).
    [CrossRef]
  17. Z. Wu, Y.-g. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach–Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101, 141106 (2012).
    [CrossRef]

2013 (1)

2012 (7)

T. Han, Y.-g. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry–Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20, 13320–13325 (2012).
[CrossRef]

Z. Wu, Y.-g. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach–Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101, 141106 (2012).
[CrossRef]

X. Zheng, Y.-g. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100, 141104 (2012).
[CrossRef]

S.-j. Qiu, Y. Chen, F. Xu, and Y.-q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37, 863–865 (2012).
[CrossRef]

K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37, 1373–1375 (2012).
[CrossRef]

C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 29, 1136–1140 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrel, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30, 1150–1155 (2012).
[CrossRef]

2011 (4)

2009 (1)

2008 (1)

2007 (1)

2005 (1)

2002 (1)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

Badenes, G.

Calixto, S.

Chen, J.

X. Zheng, Y.-g. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100, 141104 (2012).
[CrossRef]

Chen, Y.

Choi, H. Y.

Chu, J.

Coviello, G.

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

Cui, W.

Dinh, X. Q.

Z. Wu, Y.-g. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach–Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101, 141106 (2012).
[CrossRef]

Dong, B.

Dong, X.

Farrel, G.

Finazzi, V.

Guo, J.

Han, T.

Hao, E. J.

Hernández, D. M.

Hu, D. J. J.

Jiang, M.

Z. Wu, Y.-g. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach–Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101, 141106 (2012).
[CrossRef]

Jin, Y.

Kou, J.-l.

Lee, B. H.

Li, S.

Z. Wu, Y.-g. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach–Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101, 141106 (2012).
[CrossRef]

T. Han, Y.-g. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry–Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20, 13320–13325 (2012).
[CrossRef]

Li, Z.

Lim, J. L.

Liu, B.

Liu, Y.-g.

Lu, Y.-q.

Mathew, J.

Milenko, K.

Minkovich, V. P.

Park, K. S.

Pruneri, V.

Qiu, S.-j.

Selleri, S.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

Semenova, Y.

Shen, C.

Shum, P. P.

K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37, 1373–1375 (2012).
[CrossRef]

Z. Wu, Y.-g. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach–Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101, 141106 (2012).
[CrossRef]

Sotskaya, L. I.

Sotsky, A. B.

Sun, Z.

Tai, B.

Tong, W.

Villatoro, J.

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

Wang, J.

Wang, S.

Wang, Y.

Wang, Z.

Wei, C.

X. Zheng, Y.-g. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100, 141104 (2012).
[CrossRef]

Wei, H.

Wolinski, T. R.

Wu, Z.

Xu, F.

You, Y.

Zhang, T.

Zheng, X.

X. Zheng, Y.-g. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100, 141104 (2012).
[CrossRef]

Zhong, C.

Zhou, W.

Zoboli, M.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

Zou, X.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

X. Zheng, Y.-g. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett. 100, 141104 (2012).
[CrossRef]

Z. Wu, Y.-g. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach–Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101, 141106 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (6)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the fluid-filled PCFMI. (b) Microscope image of the PCF’s holes pattern. (c) Mode field picture of mode LP11 at end 2 of the fluid-filled PCF acquired by a CCD camera.

Fig. 2.
Fig. 2.

(a) Calculated Δn1(λ,T)/T for wavelength ranging from 1000 to 1650 nm at 25°C. (b) The calculated group birefringence Ng1 and Ng2 in the infilled and unfilled PCF at 25°C. The inset is the effective refractive index of the two core modes in the unfilled and filled PCF.

Fig. 3.
Fig. 3.

(a) Calculated temperature sensitivities S versus wavelength for k=0.256, 0.282, 0.333, 0.476, and 1, respectively. (b) Calculated S versus k for different wavelengths.

Fig. 4.
Fig. 4.

Contrast of the wavelength shift of three cases at 1480 nm with k=0.256, 0.282, and 0.476 at different temperatures. The continuous line is the linear fitting of the experimental data. The inset is the transmission spectra of the PCFMI with k=0.256 and at different temperatures of 45°C, 50°C, and 55°C.

Fig. 5.
Fig. 5.

(a) Spectral responses of dips A and B at temperatures 30°C, 35°C, and 40°C with k=0.333. (b) Wavelengths shift of dips A and B with varying temperatures. The continuous lines are the linear fitting of the experimental results.

Fig. 6.
Fig. 6.

(a) Spectral responses of dips A and B with varying strain for k=0.333. (b) Wavelength shift of dips A and B against the increasing of strain. The continuous lines are the linear fitting of the experimental data.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t(λ,T)=cos2(π*Δn1(λ,T)*L1+Δn2(λ,T)*L2λ(T)),
Δn1(λ,T)*L1+Δn2(λ,T)*L2λ(T)=m+1/2,
dλdT=Δn1(λ,T)T*L1/L2*λ(T)+Δn2(λ)T*λ(T)[Δn1Δn1(λ,T)λ*λ(T)]*L1/L2+[Δn2Δn2(λ)λ*λ(T)].
Ng=ΔndΔndλ*λ,
S=dλdT=Δn1(λ,T)T*λ(T)Ng1+Ng2*(1k1),
[ΔTΔε]=[ST,AST,BSε,ASε,B]1[ΔλAΔλB]=[96.10172.222.012.60]1[ΔλAΔλB],

Metrics