Abstract

We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
    [CrossRef]
  2. W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
    [CrossRef]
  3. R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991).
    [CrossRef]
  4. D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987).
    [CrossRef]
  5. A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
    [CrossRef]
  6. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
    [CrossRef]
  7. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
    [CrossRef]
  8. R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics Publishing, 1986).
  9. U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
    [CrossRef]
  10. K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
    [CrossRef]
  11. M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
    [CrossRef]
  12. K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
    [CrossRef]
  13. P. S. Hsu, W. D. Kulatilaka, N. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012).
    [CrossRef]
  14. C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
    [CrossRef]
  15. P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
    [CrossRef]
  16. G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
    [CrossRef]
  17. U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
    [CrossRef]
  18. R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
    [CrossRef]
  19. G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011).
    [CrossRef]
  20. F. Loccisano, S. Joshi, I. S. Franka, Z. Yin, W. R. Lempert, and A. P. Yalin, “Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics,” Appl. Opt. 51, 6691–6699 (2012).
    [CrossRef]
  21. W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
    [CrossRef]
  22. C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
    [CrossRef]
  23. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
    [CrossRef]
  24. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous, burst-mode laser for high-speed planar imaging” Opt. Lett. 37, 1346–1348 (2012).
    [CrossRef]
  25. F. Fuest, J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett. 37, 3231–3233 (2012).
    [CrossRef]
  26. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, 1996).
  27. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging,” Opt. Express 21, 681–689 (2013).
    [CrossRef]
  28. B. Peterson and V. Sick, “Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine,” Appl. Phys. B 97, 887–895 (2009).
    [CrossRef]
  29. J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
    [CrossRef]
  30. N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Developement of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
    [CrossRef]
  31. M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96, 241–245 (2009).
    [CrossRef]
  32. V. Sick, M. Drake, and T. Fansler, “High-speed imaging for direct-injection gasoline engine research and development,” Exp. Fluids 49, 937–947 (2010).
    [CrossRef]
  33. K. N. Gabet, N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).
    [CrossRef]
  34. P. S. Hsu, N. Jiang, J. R. Gord, and S. Roy, “Fiber-coupled, 10 kHz simultaneous OH planar laser-induced fluorescence/particle-image velocimetry,” Opt. Lett. 38, 130–132(2013).
    [CrossRef]
  35. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
    [CrossRef]
  36. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
    [CrossRef]
  37. R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987).
    [CrossRef]
  38. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985).
    [CrossRef]
  39. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47, 4812–4832 (2008).
    [CrossRef]
  40. I. Nuritdinov, K. Y. Masharipov, and M. O. Doniev, “Formation of radiation-induced defects in silica glasses at high irradiation temperatures,” Glass Phys. Chem. 29, 11–15 (2003).
    [CrossRef]
  41. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef]
  42. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
    [CrossRef]
  43. J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
    [CrossRef]
  44. A. Salazar, “On thermal diffusivity,” Eur. J. Phys. 24, 351–358 (2003).
    [CrossRef]
  45. T. Wang, Z. Xiao, and W. Luo, “Influences of thermal annealing temperatures on irradiation induced E’ centers in silica glass,” IEEE Trans. Nucl. Sci. 55, 2685–2688 (2008).
    [CrossRef]
  46. P. S. Hsu, S. Roy, N. Jiang, and J. R. Gord, “Large-aperture, tapered fiber–coupled, 10 kHz particle-image velocimetry,” Opt. Express 21, 3617–3626 (2013).
    [CrossRef]
  47. X. Zhu, A. Schulzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010).
    [CrossRef]

2013

2012

2011

G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
[CrossRef]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Developement of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
[CrossRef]

2010

V. Sick, M. Drake, and T. Fansler, “High-speed imaging for direct-injection gasoline engine research and development,” Exp. Fluids 49, 937–947 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

X. Zhu, A. Schulzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010).
[CrossRef]

2009

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96, 241–245 (2009).
[CrossRef]

B. Peterson and V. Sick, “Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine,” Appl. Phys. B 97, 887–895 (2009).
[CrossRef]

2008

A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47, 4812–4832 (2008).
[CrossRef]

T. Wang, Z. Xiao, and W. Luo, “Influences of thermal annealing temperatures on irradiation induced E’ centers in silica glass,” IEEE Trans. Nucl. Sci. 55, 2685–2688 (2008).
[CrossRef]

2006

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

2004

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
[CrossRef]

2003

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

I. Nuritdinov, K. Y. Masharipov, and M. O. Doniev, “Formation of radiation-induced defects in silica glasses at high irradiation temperatures,” Glass Phys. Chem. 29, 11–15 (2003).
[CrossRef]

A. Salazar, “On thermal diffusivity,” Eur. J. Phys. 24, 351–358 (2003).
[CrossRef]

1999

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
[CrossRef]

1998

M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

1996

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

1995

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

1992

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

1991

R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991).
[CrossRef]

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[CrossRef]

1989

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

1988

1987

D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987).
[CrossRef]

1985

1983

Alden, M.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Allison, S. W.

Auge, M.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Boechat, A. A. P.

Brimacombe, R. K.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987).
[CrossRef]

Bublitz, J.

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Cundy, M.

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96, 241–245 (2009).
[CrossRef]

Danczyk, S. A.

Danehy, P. M.

Delmdahl, R. F.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Dickinson, M. R.

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

Dietz, H.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Do, B. T.

Doniev, M. O.

I. Nuritdinov, K. Y. Masharipov, and M. O. Doniev, “Formation of radiation-induced defects in silica glasses at high irradiation temperatures,” Glass Phys. Chem. 29, 11–15 (2003).
[CrossRef]

Drake, M.

V. Sick, M. Drake, and T. Fansler, “High-speed imaging for direct-injection gasoline engine research and development,” Exp. Fluids 49, 937–947 (2010).
[CrossRef]

Dressel, M.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, 1996).

Fabian, H.

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

Fan, W.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Fansler, T.

V. Sick, M. Drake, and T. Fansler, “High-speed imaging for direct-injection gasoline engine research and development,” Exp. Fluids 49, 937–947 (2010).
[CrossRef]

Fasold, G.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Feng, G.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Fermann, M. E.

Franka, I. S.

Fu, Y.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Fuest, F.

Funahashi, S.

K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
[CrossRef]

Gabet, K. N.

K. N. Gabet, N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).
[CrossRef]

Gillies, G. T.

Gonschior, C.

G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011).
[CrossRef]

Gord, J. R.

Grzesik, U.

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

Hack, H.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

Hall, D. R.

Han, J.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Hanson, R. K.

Higginson, L.

D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987).
[CrossRef]

Hillrichs, G.

G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011).
[CrossRef]

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

Hirano, M.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Horvath, C.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Hosono, H.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Hsu, P. S.

Hult, J.

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Ikushima, A. J.

K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
[CrossRef]

K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
[CrossRef]

Imamura, K.

K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
[CrossRef]

Ito, M.

K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
[CrossRef]

Ivey, C. B.

Jahn, R.

R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991).
[CrossRef]

Jiang, N.

Jones, J. D. C.

Joshi, S.

Juhasz, T.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Jungbluth, K. H.

R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991).
[CrossRef]

Kahlke, M.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Karlitschek, P.

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

Kikugawa, S.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Kimball-Linne, M. A.

King, T. A.

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

Klein, K. F.

G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011).
[CrossRef]

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

Kotani, T.

Kulatilaka, W. D.

Kunstmann, R.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

Kychakoff, G.

Lempert, W. R.

Leopold, K. E.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987).
[CrossRef]

Li, H.

Li, Y.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Liu, X.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Loccisano, F.

Loesel, F.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Luo, W.

T. Wang, Z. Xiao, and W. Luo, “Influences of thermal annealing temperatures on irradiation induced E’ centers in silica glass,” IEEE Trans. Nucl. Sci. 55, 2685–2688 (2008).
[CrossRef]

Magnuson, D. W.

Martin, R.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Masharipov, K. Y.

I. Nuritdinov, K. Y. Masharipov, and M. O. Doniev, “Formation of radiation-induced defects in silica glasses at high irradiation temperatures,” Glass Phys. Chem. 29, 11–15 (2003).
[CrossRef]

Meyer, T. R.

Mihailov, S.

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987).
[CrossRef]

Miller, J. D.

Miura, T.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
[CrossRef]

Moloney, J. V.

Mourou, G.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Natura, U.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Neu, W.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991).
[CrossRef]

Nuritdinov, I.

I. Nuritdinov, K. Y. Masharipov, and M. O. Doniev, “Formation of radiation-induced defects in silica glasses at high irradiation temperatures,” Glass Phys. Chem. 29, 11–15 (2003).
[CrossRef]

Olofsson, J.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Oto, M.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Pagano, T. S.

Papageorge, J.

Paraskevopoulos, G.

D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987).
[CrossRef]

Patnaik, A. K.

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

Patton, R. A.

K. N. Gabet, N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).
[CrossRef]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Developement of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Peterson, B.

B. Peterson and V. Sick, “Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine,” Appl. Phys. B 97, 887–895 (2009).
[CrossRef]

Peyghambarian, N.

Pronko, P. P.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Richter, M.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Roy, S.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Rutting, M.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Saito, K.

K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
[CrossRef]

K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
[CrossRef]

Salazar, A.

A. Salazar, “On thermal diffusivity,” Eur. J. Phys. 24, 351–358 (2003).
[CrossRef]

Schade, W.

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Schulzgen, A.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Sick, V.

V. Sick, M. Drake, and T. Fansler, “High-speed imaging for direct-injection gasoline engine research and development,” Exp. Fluids 49, 937–947 (2010).
[CrossRef]

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96, 241–245 (2009).
[CrossRef]

B. Peterson and V. Sick, “Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine,” Appl. Phys. B 97, 887–895 (2009).
[CrossRef]

Singleton, D.

D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987).
[CrossRef]

Slipchenko, M. N.

Smith, A. V.

Sohr, O.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Spiecker, G.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Su, D.

Sutton, J. A.

F. Fuest, J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett. 37, 3231–3233 (2012).
[CrossRef]

K. N. Gabet, N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).
[CrossRef]

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Developement of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

Taylor, R.

D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987).
[CrossRef]

Taylor, R. S.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987).
[CrossRef]

VanRompay, P. A.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Wandschneider, R.

G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011).
[CrossRef]

Wang, T.

T. Wang, Z. Xiao, and W. Luo, “Influences of thermal annealing temperatures on irradiation induced E’ centers in silica glass,” IEEE Trans. Nucl. Sci. 55, 2685–2688 (2008).
[CrossRef]

Webster, M.

Wei, H.

Whitehurst, C.

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

Wood, R. M.

R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics Publishing, 1986).

Xiao, Z.

T. Wang, Z. Xiao, and W. Luo, “Influences of thermal annealing temperatures on irradiation induced E’ centers in silica glass,” IEEE Trans. Nucl. Sci. 55, 2685–2688 (2008).
[CrossRef]

Xie, X.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Yalin, A. P.

Yang, L.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Yin, Z.

Zhang, Q.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Zhou, S.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Zhu, Q.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Zhu, X.

Appl. Opt.

G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
[CrossRef]

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

P. S. Hsu, W. D. Kulatilaka, N. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012).
[CrossRef]

F. Loccisano, S. Joshi, I. S. Franka, Z. Yin, W. R. Lempert, and A. P. Yalin, “Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics,” Appl. Opt. 51, 6691–6699 (2012).
[CrossRef]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
[CrossRef]

S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985).
[CrossRef]

A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47, 4812–4832 (2008).
[CrossRef]

Appl. Phys. B

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

B. Peterson and V. Sick, “Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine,” Appl. Phys. B 97, 887–895 (2009).
[CrossRef]

M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96, 241–245 (2009).
[CrossRef]

K. N. Gabet, N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012).
[CrossRef]

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Appl. Surf. Sci.

J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010).
[CrossRef]

Environ. Sci. Technol.

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Eur. J. Phys.

A. Salazar, “On thermal diffusivity,” Eur. J. Phys. 24, 351–358 (2003).
[CrossRef]

Exp. Fluids

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

V. Sick, M. Drake, and T. Fansler, “High-speed imaging for direct-injection gasoline engine research and development,” Exp. Fluids 49, 937–947 (2010).
[CrossRef]

Glass Phys. Chem.

I. Nuritdinov, K. Y. Masharipov, and M. O. Doniev, “Formation of radiation-induced defects in silica glasses at high irradiation temperatures,” Glass Phys. Chem. 29, 11–15 (2003).
[CrossRef]

IEEE J. Quantum Electron.

D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987).
[CrossRef]

IEEE Trans. Nucl. Sci.

T. Wang, Z. Xiao, and W. Luo, “Influences of thermal annealing temperatures on irradiation induced E’ centers in silica glass,” IEEE Trans. Nucl. Sci. 55, 2685–2688 (2008).
[CrossRef]

J. Appl. Phys.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

J. Mod. Opt.

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

J. Non-Cryst. Solids

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004).
[CrossRef]

Opt. Commun.

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998).
[CrossRef]

Phys. Rev. Lett.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef]

Proc. Combust. Inst.

N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Developement of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011).
[CrossRef]

Proc. SPIE

G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011).
[CrossRef]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

Rev. Sci. Instrum.

J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006).
[CrossRef]

Other

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, 1996).

R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics Publishing, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Maximum output of 283 nm, 10 kHz laser pulse from fiber as a function of fiber length. Dashed line is for guiding the eye.

Fig. 2.
Fig. 2.

Nonlinear fiber transmission at 283 nm for l=1m fibers for a 10 kHz repetition-rate laser. Solid curves are theoretical fits of Eq. (1) using values of α1 indicated in the figure.

Fig. 3.
Fig. 3.

Longtime behavior of fiber transmission for 6 m long, 400 m core FDP fiber. Energies of 20 J (solid line) and 12 J (dashed line) represent initial energy of 10 kHz pulse output from fiber.

Fig. 4.
Fig. 4.

Schematic of fiber-coupled, high-speed OH-PLIF detection system.

Fig. 5.
Fig. 5.

Averaged OH-PLIF images of a ϕ=1.25 premixed C2H4-air flame on a Hencken burner obtained using (a) the direct beam output from the laser system, (b) the fiber-delivered beam, (c) vertical OH fluorescence intensity profiles found in (a) and (b). Shown in the insets in (a) and (b) are spatial profiles of the input beam. Images were averaged over 10 samples.

Fig. 6.
Fig. 6.

(a) Partial single-shot OH-PLIF image sequences from an atmospheric-pressure, turbulent C2H4-air flame on a Hencken burner being pulsated at 10 Hz and (b) full time series of OH concentration evolution.

Tables (2)

Tables Icon

Table 1. Fiber Characteristics

Tables Icon

Table 2. Two-Photon Absorption Coefficients of Fused-Silica Fiber

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T1=(1+β)exp(α0l)β,

Metrics