Abstract

We propose a kind of photonic crystal fiber (PCF) designed with an annular core and fabricated using a single material. Characteristics of such fibers, including the mode field distributions of both the core and cladding modes, the effective mode area of the fundamental core mode, and the dispersion profile, are investigated using the finite element method. The coupling between the fundamental mode and an excited core mode or cladding mode is discussed in order to apply the proposed design in mode-coupling devices. Results show that such a PCF may be suitable for both optical communications and optical sensing technologies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23, 524–532 (2005).
    [CrossRef]
  2. S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
    [CrossRef]
  3. S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005).
    [CrossRef]
  4. S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 222, 213–219 (2003).
  5. M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).
  6. R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).
  7. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef]
  8. S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13, 6039–6050 (2005).
    [CrossRef]
  9. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31, 164–166 (2006).
    [CrossRef]
  10. Z. Guiyao, H. Zhiyun, L. Shuguang, and H. Lantian, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45, 4433–4436 (2006).
    [CrossRef]
  11. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
    [CrossRef]
  12. G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer, 2000), pp. 195–211.
  13. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005).
    [CrossRef]
  14. J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007).
    [CrossRef]
  15. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [CrossRef]
  16. W. Chen, S. Lou, L. Wang, and S. Jian, “Novel modal interferometer based on ring-core photonic crystal fiber,” Chin. Opt. Lett. 8, 986–988 (2010).
    [CrossRef]
  17. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applications,” J. Lightwave Technol. 27, 4919–4926 (2009).
    [CrossRef]
  18. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
    [CrossRef]

2010

2009

S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applications,” J. Lightwave Technol. 27, 4919–4926 (2009).
[CrossRef]

M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).

2007

J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
[CrossRef]

2006

2005

2003

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 222, 213–219 (2003).

2002

R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

2000

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

1996

1973

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer, 2000), pp. 195–211.

Alam, M. S.

M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).

Atkin, D. M.

Baldwin, K. G. H.

R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).

Birks, T. A.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Buckman, S. J.

R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).

Chen, W.

Choi, H. Y.

Choi, S.

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23, 524–532 (2005).
[CrossRef]

S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005).
[CrossRef]

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 222, 213–219 (2003).

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Chung, Y.

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Dall, R. G.

R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).

Eom, T.

S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005).
[CrossRef]

Florous, N.

Gao, M.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007).
[CrossRef]

Guiyao, Z.

Hoogerland, M. D.

R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).

Hu, W.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007).
[CrossRef]

Islam, M. M.

M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).

Jamal, N. B.

M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).

Jeong, Y.

Jian, S.

Jiang, C.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007).
[CrossRef]

Jung, H.

Jung, Y.

Kim, M. J.

Kim, S.

Kim, Y.

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Kirchhof, J.

Knight, J. C.

Kobelke, J.

Koshiba, M.

Lantian, H.

Lee, B.

S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005).
[CrossRef]

Lee, B. H.

Lee, J. W.

S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005).
[CrossRef]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23, 524–532 (2005).
[CrossRef]

Lee, S.

Lee, Y.

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Lou, S.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Oh, K.

S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode-coupling device applications,” J. Lightwave Technol. 27, 4919–4926 (2009).
[CrossRef]

S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett. 31, 164–166 (2006).
[CrossRef]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23, 524–532 (2005).
[CrossRef]

S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005).
[CrossRef]

S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13, 6039–6050 (2005).
[CrossRef]

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 222, 213–219 (2003).

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Paek, U.

S. Kim, U. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13, 6039–6050 (2005).
[CrossRef]

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Park, C.

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Park, J.

Park, K.

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Parvez, M. R.

M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Schuster, K.

Shin, W.

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

Shuguang, L.

Tierney, D.

R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).

Wang, J.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007).
[CrossRef]

Wang, L.

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

Zahid, M. A.

M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).

Zhiyun, H.

Appl. Opt.

Appl. Phys. B

R. G. Dall, M. D. Hoogerland, D. Tierney, K. G. H. Baldwin, and S. J. Buckman, “Single-mode hollow optical fibres for atom guiding,” Appl. Phys. B 74, 11–18 (2002).

Chin. Opt. Lett.

IEEE J. Quantum Electron.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Choi, K. Oh, W. Shin, C. Park, U. Paek, K. Park, Y. Chung, Y. Kim, and Y. Lee, “Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photon. Technol. Lett. 14, 248–250 (2002).
[CrossRef]

S. Choi, T. Eom, Y. Jung, B. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fiber bandpass filter based on hollow optical fiber and long-period grating pair,” IEEE Photon. Technol. Lett. 17, 115–117 (2005).
[CrossRef]

J. Electr. Eng.

M. M. Islam, M. A. Zahid, N. B. Jamal, M. R. Parvez, and M. S. Alam, “Wavelength dependence of guiding properties in highly birefringent elliptical ring core optical fiber,” J. Electr. Eng. 36, 10–15 (2009).

J. Lightwave Technol.

Opt. Commun.

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 222, 213–219 (2003).

Opt. Express

Opt. Fiber Technol.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Opt. Laser Technol.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Properties of index-guided PCF with air-core,” Opt. Laser Technol. 39, 317–321 (2007).
[CrossRef]

Opt. Lett.

Other

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer, 2000), pp. 195–211.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Our proposed PCF structure.

Fig. 2.
Fig. 2.

Mode field distributions in the PCF at a wavelength of 1.55 μm. The top two rows show the core modes: (a) HE11, (b) TE01, (c) HE21, and (d) TM01. The bottom two rows show the cladding modes: (e) TM02, (f) HE22, (g) TE02, and (h) HE12.

Fig. 3.
Fig. 3.

Fraction of power of the fundamental mode within the central air hole plotted as a function of wavelength.

Fig. 4.
Fig. 4.

Effective mode area as a function of wavelength for two PCFs designed with (solid) or without (dashed) a central air hole (see insets for the design).

Fig. 5.
Fig. 5.

Dispersion parameter D as a function wavelength for the four PCFs with designs as indicated.

Fig. 6.
Fig. 6.

Effective refractive index profile of guided modes in the PCF: (a) core modes and (b) cladding modes.

Fig. 7.
Fig. 7.

Propagation constant difference between the HE11 core mode and (a) a higher-order core mode or (b) a cladding mode.

Fig. 8.
Fig. 8.

Phase matching pitches for coupling between the HE11 core mode and (a) higher-order core modes and (b) cladding modes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f=air(ExHyEyHx)dxdytotal(ExHyEyHx)dxdy,
Aeff=(F(x,y)2dxdy)2(F(x,y)4dxdy),
D=λcd2Re(neff)dλ2,
β0β=Δβ=2πL,

Metrics