Abstract

The gain-switched fiber laser presents the simplest construction among pulsed lasers in the nanosecond region and consequently is also very robust. These properties make it potentially appropriate for industrial applications, especially in some types of microprocessing. However, careful design of such lasers is important in order to reach the required pulse parameters (peak power and pulse duration). To design and optimize a gain-switched fiber laser for microprocessing, a numerical model using time and spatial dependencies was developed and reported in this paper. The effects of pump power and laser length on the pulse duration and peak power were investigated by modeling gain-switched operation. Further, the results of modeling were compared to data from an experimental setup based on a Yb3+-doped gain-switched fiber laser, revealing good agreement.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
    [CrossRef]
  2. Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
    [CrossRef]
  3. P. Wan, J. Liu, L. M. Yang, and F. Amzajerdian, “Pulse shaping fiber laser at 1.5 μm,” Appl. Opt. 51, 214–219 (2012).
    [CrossRef]
  4. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, “Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser,” Opt. Express 19, 10824–10833 (2011).
    [CrossRef]
  5. W. Margulis, Z. Yu, M. Malmström, P. Rugeland, H. Knape, and O. Tarasenko, “High-speed electrical switching in optical fibers [Invited],” Appl. Opt. 50, E65–E75 (2011).
    [CrossRef]
  6. R. Petkovšek, J. Saby, F. Salin, T. Schumi, and F. Bammer, “SCPEM-Q-switching of a fiber-rod-laser,” Opt. Express 20, 7415–7421 (2012).
    [CrossRef]
  7. R. Petkovšek, F. Bammer, D. Schuöcker, and J. Možina, “Dual-mode single-crystal photoelastic modulator and possible applications,” Appl. Opt. 48, C86–C91 (2009).
    [CrossRef]
  8. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17, 17596–17602 (2009).
    [CrossRef]
  9. S. Maryashin, A. Unt, and V. P. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
    [CrossRef]
  10. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007).
    [CrossRef]
  11. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19, 14949–14954 (2011).
    [CrossRef]
  12. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a ND+3-doped fiber laser,” Opt. Lett. 14, 671–673 (1989).
    [CrossRef]
  13. K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4, 973–975 (1992).
    [CrossRef]
  14. S. D. Jackson, B. C. Dickinson, and T. A. King, “Sequence lasing in a gain-switched Yb3+, Er3+-doped silica double-clad fiber laser,” Appl. Opt. 41, 1698–1703 (2002).
    [CrossRef]
  15. R. T. Su, P. Zhou, H. Xiao, X. L. Wang, and X. J. Xu, “150 W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format,” Appl. Opt. 51, 3655–3659 (2012).
    [CrossRef]
  16. F. He, J. H. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express 14, 12846–12858 (2006).
    [CrossRef]
  17. Y. Wang, and C. Q. Xu, “Modeling and optimization of Q-switched double-clad fiber lasers,” Appl. Opt. 45, 2058–2071 (2006).
    [CrossRef]
  18. X. P. Cheng, P. Shum, M. Tang, and R. Wu, “Numerical analysis and characterization of fiber Bragg grating-based Q-switched ytterbium-doped double-clad fiber lasers,” Opt. Lasers Eng. 47, 148–155 (2009).
    [CrossRef]
  19. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994).
    [CrossRef]
  20. A. Yariv and P. Yeh, “Amplified spontaneous emission,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 755–759.

2012 (3)

2011 (4)

2009 (3)

2007 (1)

2006 (4)

S. Maryashin, A. Unt, and V. P. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[CrossRef]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Y. Wang, and C. Q. Xu, “Modeling and optimization of Q-switched double-clad fiber lasers,” Appl. Opt. 45, 2058–2071 (2006).
[CrossRef]

F. He, J. H. Price, K. T. Vu, A. Malinowski, J. K. Sahu, and D. J. Richardson, “Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling,” Opt. Express 14, 12846–12858 (2006).
[CrossRef]

2002 (1)

1994 (1)

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994).
[CrossRef]

1992 (1)

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4, 973–975 (1992).
[CrossRef]

1989 (1)

Alkeskjold, T. T.

Amzajerdian, F.

Bammer, F.

Barnard, C.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994).
[CrossRef]

Bennetts, S.

Broeng, J.

Burgoyne, B.

Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
[CrossRef]

Cheng, X. P.

X. P. Cheng, P. Shum, M. Tang, and R. Wu, “Numerical analysis and characterization of fiber Bragg grating-based Q-switched ytterbium-doped double-clad fiber lasers,” Opt. Lasers Eng. 47, 148–155 (2009).
[CrossRef]

Chrostowski, J.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994).
[CrossRef]

Cocquelin, B.

Dickinson, B. C.

Gapontsev, V. P.

S. Maryashin, A. Unt, and V. P. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[CrossRef]

Godbout, N.

Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
[CrossRef]

Hakimi, F.

Hattori, K.

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4, 973–975 (1992).
[CrossRef]

Haub, J.

He, F.

Hemming, A.

Jackson, S. D.

Jiang, M.

Kavehrad, M.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994).
[CrossRef]

Kim, Y.

Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
[CrossRef]

King, T. A.

Kitagawa, T.

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4, 973–975 (1992).
[CrossRef]

Knape, H.

Lægsgaard, J.

Lamouche, G.

Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
[CrossRef]

Laurell, F.

Laurila, M.

Limpert, J.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Liu, J.

Malinowski, A.

Malmström, M.

Margulis, W.

Maryashin, S.

S. Maryashin, A. Unt, and V. P. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[CrossRef]

Možina, J.

Myslinski, P.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994).
[CrossRef]

Petkovšek, R.

Po, H.

Price, J. H.

Richardson, D. J.

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Rugeland, P.

Saby, J.

Sahu, J. K.

Salin, F.

Schreiber, T.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Schumi, T.

Schuöcker, D.

Scolari, L.

Shum, P.

X. P. Cheng, P. Shum, M. Tang, and R. Wu, “Numerical analysis and characterization of fiber Bragg grating-based Q-switched ytterbium-doped double-clad fiber lasers,” Opt. Lasers Eng. 47, 148–155 (2009).
[CrossRef]

Simakov, N.

Snitzer, E.

Su, R. T.

Tang, M.

X. P. Cheng, P. Shum, M. Tang, and R. Wu, “Numerical analysis and characterization of fiber Bragg grating-based Q-switched ytterbium-doped double-clad fiber lasers,” Opt. Lasers Eng. 47, 148–155 (2009).
[CrossRef]

Tarasenko, O.

Tayebati, P.

Tumminelli, R.

Tunnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Unt, A.

S. Maryashin, A. Unt, and V. P. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[CrossRef]

Vergnole, S.

Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
[CrossRef]

Villeneuve, A.

Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
[CrossRef]

Vu, K. T.

Wan, P.

Wang, X. L.

Wang, Y.

Wu, R.

X. P. Cheng, P. Shum, M. Tang, and R. Wu, “Numerical analysis and characterization of fiber Bragg grating-based Q-switched ytterbium-doped double-clad fiber lasers,” Opt. Lasers Eng. 47, 148–155 (2009).
[CrossRef]

Xiao, H.

Xu, C. Q.

Xu, X. J.

Yang, L. M.

Yariv, A.

A. Yariv and P. Yeh, “Amplified spontaneous emission,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 755–759.

Yeh, P.

A. Yariv and P. Yeh, “Amplified spontaneous emission,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 755–759.

Yu, Z.

Zenteno, L. A.

Zhou, P.

Appl. Opt. (6)

IEEE J. Quantum Electron. (1)

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Hattori and T. Kitagawa, “Gain switching of waveguide laser based on Nd-doped silica planar lightwave circuit pumped by laser diodes,” IEEE Photon. Technol. Lett. 4, 973–975 (1992).
[CrossRef]

Opt. Express (5)

Opt. Lasers Eng. (1)

X. P. Cheng, P. Shum, M. Tang, and R. Wu, “Numerical analysis and characterization of fiber Bragg grating-based Q-switched ytterbium-doped double-clad fiber lasers,” Opt. Lasers Eng. 47, 148–155 (2009).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

Y. Kim, B. Burgoyne, N. Godbout, A. Villeneuve, G. Lamouche, and S. Vergnole, “Picosecond programmable laser sweeping over 50 mega-wavelengths per second,” Proc. SPIE 7914, 79140Y (2011).
[CrossRef]

S. Maryashin, A. Unt, and V. P. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[CrossRef]

Other (1)

A. Yariv and P. Yeh, “Amplified spontaneous emission,” in Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), pp. 755–759.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of discrete laser description with effective laser levels. For Yb3+-doped silica glass, the upper and lower levels are split because of the Stark effect. At 976 nm, we are pumping directly to the upper laser level (N2i); for a lasing wavelength of 1064 nm, the system behaves as a four-level system.

Fig. 2.
Fig. 2.

Test result of discrete spatial model for time evolution of (a) upper level population and (b) laser power in forward direction in CW regime along the fiber length. (c) Upper level population averaged along the fiber, and output power for gain-switched and CW laser. Pumping is plotted only for gain-switched regime.

Fig. 3.
Fig. 3.

Schematics of experimental setup. Control unit monitors the signal from PD and consists of user interface, switching logic, and temperature control. Fresnel reflection from straight cleaved fiber end is marked as R1. Stabilized spectrum of pump light at 976 nm is shown in (a), together with the absorption peak of Yb3+-doped silica glass. Pump and laser light were split by dichroic mirror with high transmissivity (HT) at 976 nm and high reflectivity (HR) at 1064 nm. Gain-switched laser produced pulse train as shown in (b) where rather good pulse to pulse stability was achieved through feedback loop with standard deviation of 2%.

Fig. 4.
Fig. 4.

Comparison of modeled results (symbols) and approximate relations (lines) obtained from homogenous rate equations. For clarity, the laser and pump width graphs are linearized. Model parameters are shown in Table 1.

Fig. 5.
Fig. 5.

Dependence of (a) laser output pulse duration, (b) its peak power, and (c) pump pulse duration on pump pulse power. Gray line and black dots correspond to the model and measurement, respectively. Fiber length was 2.12 m.

Fig. 6.
Fig. 6.

Dependence of (a) laser output pulse duration, (b) its peak power, and (c) pump pulse duration on fiber length. Dotted lines represent simple approximations of dependences derived from homogenous rate equations. Pump pulse power was 44.3 W.

Fig. 7.
Fig. 7.

Model prediction for higher pumping powers and different fiber lengths. Other modeling parameters are the same as in Table 1. Grayed out area represents pulses with peak power greater than 1 kW and duration of less than 50 ns, which can be achieved for pump pulse powers higher than 190 W.

Fig. 8.
Fig. 8.

Model prediction for wavelengths 1064 and 1030 nm with two different concentrations of active ions: the same as in Fig. 7 and twice as big. Required peak power of 1 kW is achieved for 115 W of pumping pulse power with the increased concentration of active ions.

Tables (1)

Tables Icon

Table 1. Laser Parameters Used in This Model

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

N2t=Γσ12cV(N2N1)ϕN2τ21+w,
ϕt=Γσ12cV(N2N1)ϕφτLc+βN2τ21.
N1=(NtN2)exp(E1E0kbT)=(NtN2)ε(T),
Pi±=(110dzα(N0i)/10)Pi1.
Nit=ΓcVi(NiNtr)[σ21(ϕi++ϕi)+σ21ASE(φi++φi)]Niτ21+wi(t,ϕm),
ϕi±t=Γσ21cVi(NiNtr)ϕi±ϕi±τc+β2Niτ21+ϕi1±τc,
φi±t=Γσ21ASEcVi(NiNtr)φi±φi±τc+β02Niτ21+φi1±τc,
ϕ1+=R1ϕ1,ϕm=R2ϕm+,φm=R2φm+.
ϕ1+t=Γσ21cV1(N1Ntr)ϕ1+ϕ1+τc+β2N1τ21+R1ϕ1τc,
φ1+t=Γσ21ASEcV1(N1Ntr)φ1+φ1+τc+β02N1τ21.
ϕmt=Γσ21cVm(NmNtr)ϕmϕmτc+β2Nmτ21+R2ϕm+τc,
φmt=Γσ21ASEcVm(NmNtr)φmφmτc+β02Nmτ21+R2φm+τc.
ϕi±t=ϕi±τc+ϕi1±τc,
φi±t=φi±τc+φi1±τc.
tLpτLchcλPpAσ1Pp.
tp2=ϕthτ21βwtp1Pp.
EpELPLptptLpPp.
tLpτLcPptLpL(110αL/10).

Metrics