Abstract

Ultrashort laser-induced breakdown spectroscopy was used to detect the emission radiation from the breakdown of surface contaminants by a femtosecond laser pulse. This study focused on the detection of visible to near-infrared radiation signatures from molecular fragments of the nitro (NOx) group present in the breakdown plasma, where target chemicals of potassium nitrate (KNO3) and sodium nitrate (NaNO3) were used. Spectral signatures at a wavelength region around 410 nm were observed for both KNO3 and NaNO3, and were identified as the fluorescence transitions of the NOx-molecular structures. The signatures obtained were systematically analyzed and studied as functions of laser parameters. It is shown that for laser parameters used in this study, laser pulse durations 1ps were not as effective as shorter pulses in generating these signatures. A visible wavelength NOx signature and the extended high-intensity propagation of a femtosecond laser could be advantageous to detecting nitro-group energetic materials at standoff distances.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University, 2006).
  2. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003).
    [CrossRef]
  3. P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011).
    [CrossRef]
  4. W. L. Kruer, The Physics of Laser Plasma Interactions(Addison-Wesley, 1988), Chap. 5.
  5. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef]
  6. K. Song, Y. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
    [CrossRef]
  7. P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
    [CrossRef]
  8. Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
    [CrossRef]
  9. H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006).
    [CrossRef]
  10. H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
    [CrossRef]
  11. D. Mirell and O. Chalus, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, B108–B111 (2008).
    [CrossRef]
  12. C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
    [CrossRef]
  13. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef]
  14. F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008).
    [CrossRef]
  15. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
    [CrossRef]
  16. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
    [CrossRef]
  17. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
    [CrossRef]
  18. G. A. Raiche and D. R. Crosley, “Temperature dependent quenching of the AΣ+2 and BΠ2 states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
    [CrossRef]
  19. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
    [CrossRef]
  20. P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
    [CrossRef]
  21. I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
    [CrossRef]
  22. A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, and G. Rube, “Remote atmospheric breakdown for standoff detection by using an intense short laser pulse,” Appl. Opt. 44, 5315–5320 (2005).
    [CrossRef]
  23. J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997).
    [CrossRef]
  24. D. S. Moore, “Comparative infrared and Raman spectroscopy of energetic polymers,” J. Mol. Struct. 661–662, 561–566 (2003).
    [CrossRef]
  25. R. W. B. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, 1965).
  26. M. Brook and J. Kaplan, “Dissociation energy of NO and N2,” Phys. Rev. 96, 1540–1542 (1954).
    [CrossRef]
  27. T. Ahmido, “Remote sensing of explosive surrogate using ultrashort laser induced breakdown spectroscopy,” Ph.D. dissertation (Howard University, 2011).

2011

P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011).
[CrossRef]

2009

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

2008

F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008).
[CrossRef]

D. Mirell and O. Chalus, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25, B108–B111 (2008).
[CrossRef]

2007

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

2006

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006).
[CrossRef]

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

2005

2004

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

2003

2002

K. Song, Y. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[CrossRef]

2001

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

1997

J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997).
[CrossRef]

1995

1990

G. A. Raiche and D. R. Crosley, “Temperature dependent quenching of the AΣ+2 and BΠ2 states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

1954

M. Brook and J. Kaplan, “Dissociation energy of NO and N2,” Phys. Rev. 96, 1540–1542 (1954).
[CrossRef]

Ahmido, T.

T. Ahmido, “Remote sensing of explosive surrogate using ultrashort laser induced breakdown spectroscopy,” Ph.D. dissertation (Howard University, 2011).

Alexeev, I.

A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, and G. Rube, “Remote atmospheric breakdown for standoff detection by using an intense short laser pulse,” Appl. Opt. 44, 5315–5320 (2005).
[CrossRef]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Angel, S. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Azarm, A.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Baudelet, M.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Bauer, C.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Braun, A.

Briscoe, E.

A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, and G. Rube, “Remote atmospheric breakdown for standoff detection by using an intense short laser pulse,” Appl. Opt. 44, 5315–5320 (2005).
[CrossRef]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Brook, M.

M. Brook and J. Kaplan, “Dissociation energy of NO and N2,” Phys. Rev. 96, 1540–1542 (1954).
[CrossRef]

Burgmeier, J.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Chalus, O.

Chin, S. L.

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006).
[CrossRef]

Crosley, D. R.

G. A. Raiche and D. R. Crosley, “Temperature dependent quenching of the AΣ+2 and BΠ2 states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

Daigle, J. F.

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006).
[CrossRef]

Daigle, J.-F.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003).
[CrossRef]

Doña, A.

P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011).
[CrossRef]

Doucet, F. R.

F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008).
[CrossRef]

Du, D.

Eland, K. L.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Faustino, P. J.

F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008).
[CrossRef]

Field, R. W.

J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997).
[CrossRef]

Frájafon, E.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Gaydon, A.

R. W. B. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, 1965).

Geiser, P.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Gilbert, B.

J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Goode, S. R.

Gordon, D.

Gordon, D. F.

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Hafizi, B.

P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[CrossRef]

Harmon, R. S.

Holl, G.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Hosseini, S. A.

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

Hubbard, R.

Hubbard, R. F.

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Janni, J.

J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997).
[CrossRef]

Kamali, Y.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Kaplan, J.

M. Brook and J. Kaplan, “Dissociation energy of NO and N2,” Phys. Rev. 96, 1540–1542 (1954).
[CrossRef]

Kasparian, J.

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Korn, G.

Kruer, W. L.

W. L. Kruer, The Physics of Laser Plasma Interactions(Addison-Wesley, 1988), Chap. 5.

Lai, T.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Laserna, J. J.

P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011).
[CrossRef]

Lee, Y.

K. Song, Y. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Liu, W.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Liu, X.

Lucena, P.

P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011).
[CrossRef]

Luo, Q.

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006).
[CrossRef]

Lyon, R. C.

F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008).
[CrossRef]

Mathieu, P.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

McNesby, K. L.

Méjean, G.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Mirell, D.

Miziolek, A.

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University, 2006).

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42, 6148–6152 (2003).
[CrossRef]

Moore, D. S.

D. S. Moore, “Comparative infrared and Raman spectroscopy of energetic polymers,” J. Mol. Struct. 661–662, 561–566 (2003).
[CrossRef]

Mourou, G.

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Palleschi, V.

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University, 2006).

Pearse, R. W. B.

R. W. B. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, 1965).

Penano, J. R.

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[CrossRef]

Peñano, J.

Raiche, G. A.

G. A. Raiche and D. R. Crosley, “Temperature dependent quenching of the AΣ+2 and BΠ2 states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

Rohwetter, P.

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Roy, G.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Rube, G.

Sabsabi, M.

F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008).
[CrossRef]

Salmon, E.

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Schade, W.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Schechter, I.

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University, 2006).

Sharifi, M.

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

Simard, J.-R.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Simard, P. T.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Sneddon, J.

K. Song, Y. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Song, K.

K. Song, Y. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Sprangle, P.

A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, and G. Rube, “Remote atmospheric breakdown for standoff detection by using an intense short laser pulse,” Appl. Opt. 44, 5315–5320 (2005).
[CrossRef]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[CrossRef]

Squier, J.

Steinfeld, J. I.

J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997).
[CrossRef]

Stelmaszczyk, K.

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Stratis, D. N.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Théberge, F.

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

Ting, A.

A. Ting, I. Alexeev, D. Gordon, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, and G. Rube, “Remote atmospheric breakdown for standoff detection by using an intense short laser pulse,” Appl. Opt. 44, 5315–5320 (2005).
[CrossRef]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Tobaria, L. M.

P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011).
[CrossRef]

Winkel, R. J.

Wolf, J. P.

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Wolf, J.-P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

Woste, L.

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Xu, H. L.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006).
[CrossRef]

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

Yu, J.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

Anal. Bioanal. Chem.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Q. Luo, H. L. Xu, S. A. Hosseini, J.-F. Daigle, F. Théberge, M. Sharifi, and S. L. Chin, “Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy,” Appl. Phys. B 82, 105–109 (2006).
[CrossRef]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82, 655–658 (2006).
[CrossRef]

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and J.-R. Simard, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B 87, 151–156 (2007).
[CrossRef]

Appl. Phys. Lett.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88, 063901 (2006).
[CrossRef]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, and P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Appl. Spectrosc.

Appl. Spectrosc. Rev.

K. Song, Y. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

J. Anal. At. Spectrom.

P. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[CrossRef]

F. R. Doucet, P. J. Faustino, M. Sabsabi, and R. C. Lyon, “Quantitative molecular analysis with molecular bands emission using laser-induced breakdown spectroscopy and chemometrics,” J. Anal. At. Spectrom. 23, 694–701 (2008).
[CrossRef]

J. Anal. Chem.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

J. Appl. Phys.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frájafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Chem. Phys.

G. A. Raiche and D. R. Crosley, “Temperature dependent quenching of the AΣ+2 and BΠ2 states of NO,” J. Chem. Phys. 92, 5211–5217 (1990).
[CrossRef]

J. Mol. Struct.

D. S. Moore, “Comparative infrared and Raman spectroscopy of energetic polymers,” J. Mol. Struct. 661–662, 561–566 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev.

M. Brook and J. Kaplan, “Dissociation energy of NO and N2,” Phys. Rev. 96, 1540–1542 (1954).
[CrossRef]

Phys. Rev. E

P. Sprangle, J. R. Penano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[CrossRef]

Spectrochim. Acta B Atom. Spectros.

P. Lucena, A. Doña, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta B Atom. Spectros. 66, 12–20 (2011).
[CrossRef]

Spectrochim. Acta Part A

J. Janni, B. Gilbert, R. W. Field, and J. I. Steinfeld, “Infrared absorption of explosive molecule vapors,” Spectrochim. Acta Part A 53, 1375–1381 (1997).
[CrossRef]

Other

T. Ahmido, “Remote sensing of explosive surrogate using ultrashort laser induced breakdown spectroscopy,” Ph.D. dissertation (Howard University, 2011).

R. W. B. Pearse and A. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, 1965).

W. L. Kruer, The Physics of Laser Plasma Interactions(Addison-Wesley, 1988), Chap. 5.

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of experimental setup that shows the laser beam path and the timing of camera trigger.

Fig. 2.
Fig. 2.

Measured spot diameter (FWHM) as function of laser focal positions at target. Positive values indicate focal positions behind the target plane.

Fig. 3.
Fig. 3.

Typical spectral signals obtained from NaNO3 in ULIBS using 10 mJ, 100 fs laser pulses at different laser diameters on target: A, 0.608 mm; B, 0.628 mm; C, 0.740 mm; and D, 0.896 mm. The prominent broadband feature between 400 and 420 nm appeared for both NaNO3 and KNO3 for various laser energies, pulse lengths, and spot diameters.

Fig. 4.
Fig. 4.

Spectral signals from breakdown of a focused laser pulse on (a) NaCl (blue, short dashed line), (b) KCl (red, dashed–dotted line), and (c) Al (green, long dashed line). The spectral lines near 400 nm for Al are ionic aluminum lines, the line near 404 nm for KCL is a potassium line, and the line near 422 nm for KCl and NaCl is a chlorine line.

Fig. 5.
Fig. 5.

Oscilloscope traces obtained from a fast photodiode placed at the output slit of the monochromator at 410 nm with a 20 nm bandwidth: (a) signal from Al target (blue, dotted line) and (b) signal from NaNO3 (red, solid line). Oscillations are from reflections in the coaxial cable. Curve in (a) shows a FWHM of 425 ps for the intrinsic time response of the photodiode and oscilloscope. Curve in (b) has a 1.3ns exponential decaying tail.

Fig. 6.
Fig. 6.

Spectral signature of NaNO3 obtained using 600groove/mm grating.

Fig. 7.
Fig. 7.

KNO3 (left) and NaNO3 (right) spectra around 400 nm, for laser parameters of 10 mJ, 100 fs, and 0.608 mm spot diameter.

Fig. 8.
Fig. 8.

KNO3 (left) and NaNO3 (right) spectra around 400 nm, for laser parameters of 35 mJ, 350 fs, and 0.608 mm spot diameter.

Fig. 9.
Fig. 9.

Bubble plot of signal strength of NaNO3 (left) and KNO3 (right) against laser pulse energy and pulse duration, with the bubble sizes scaled to the relative amplitude of the signal strength. When no measurable signal was observed, a marker of 0.0 bubble size was introduced to mark the attempt for that laser parameter set. The full data of 81 laser parameter sets collapsed into only nine sets for these plots. The red lines show the loci of constant laser powers of 33, 50, and 100 GW.

Fig. 10.
Fig. 10.

Bubble plot of signal strength of KNO3 (top) and NaNO3 (bottom) against laser pulse duration and spot diameter, with the bubble sizes scaled to the relative amplitude of the signal strength. When no measurable signal was observed, a marker of 0.0 bubble size was introduced to mark the attempt for that laser parameter set. Low signal amplitudes at large spot diameters and long pulse durations could be attributed to overall low laser intensities.

Fig. 11.
Fig. 11.

Bubble plot of signal strength of KNO3 (left) and NaNO3 (right) against laser intensity and pulse duration, with the bubble sizes scaled to the relative amplitude of the signal strength. When no measurable signal was observed, a marker of 0.0 bubble size was introduced to mark the attempt for that laser parameter set. For KNO3, an upper bound on the laser pulse duration (indicated by the red line) exists where signal was observed for all laser intensities attempted in the experiment. For NaNO3, the pulse duration limitation has yet to be reached and signal was still observed up to the maximum pulse duration of 1 ps.

Tables (1)

Tables Icon

Table 1. Matrix of Laser Parameters Used in This Experiment

Metrics