Abstract

We describe a nitrogen dioxide (NO2) detecting technique based on external modulation and correlation detection using a diode laser operating at 445 nm. The technique is suitable for real-time monitoring of nitrogen dioxide concentration because of its straightforward data evaluation, restraining noises, and a low degree of complexity. Measurements of concentrations of nitrogen dioxide have been carried out at room temperature and atmospheric pressure. The absorption signals have been extracted through the correlation detection technique and evaluated by a least-squares method. The results suggest a detection limit of 5 ppm using a 20 cm long gas cell with 100 ms integration time.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 1998).
  2. R. P. Wayne, Chemistry of Atmospheres (Oxford University, 2000).
  3. T. B. Ryerson, E. J. Williams, and F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
    [CrossRef]
  4. H. Edner, P. Ragnarson, S. Spännare, and S. Svanberg, “Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring,” Appl. Opt. 32, 327–333 (1993).
    [CrossRef]
  5. C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077–2088 (2006).
    [CrossRef]
  6. X. S. Cai, S. R. Li, J. Y. Fu, and Z. J. Zhao, “Study on measuring concentration of NO2 with DOAS method,” J. Eng. Thermosphys. 24, 351–353 (2003).
  7. Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
    [CrossRef]
  8. Y. C. Guo, T. H. Zhang, C. Gao, and X. E. Guo, “Differential optical absorption spectroscopy and applications in atmospheric monitoring studies,” J. Chongqing Univ. 26, 27–31 (2003).
  9. F. Xu, Z. Lv, X. Lou, Y. Zhang, and Z. Zhang, “Nitrogen dioxide monitoring using a blue LED,” Appl. Opt. 47, 5337–5340 (2008).
    [CrossRef]
  10. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
    [CrossRef]
  11. I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
    [CrossRef]
  12. S. M. Ball, J. M. Langridge, and R. L. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68–74 (2004).
    [CrossRef]
  13. G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg, “Long-path monitoring of NO2 with a 635 nm diode laser using frequency-modulation spectroscopy,” Appl. Opt. 44, 5148–5151 (2005).
    [CrossRef]
  14. Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).
  15. A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
    [CrossRef]
  16. J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
    [CrossRef]
  17. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
    [CrossRef]
  18. J. Liu and B. Z. Zhang, “Methods for weak signal detection,” in Technology of Weak Signal Detection (Academic, 2005), pp. 75–89.

2012

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

2010

I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
[CrossRef]

2009

A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
[CrossRef]

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

2008

F. Xu, Z. Lv, X. Lou, Y. Zhang, and Z. Zhang, “Nitrogen dioxide monitoring using a blue LED,” Appl. Opt. 47, 5337–5340 (2008).
[CrossRef]

Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
[CrossRef]

2006

2005

2004

S. M. Ball, J. M. Langridge, and R. L. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68–74 (2004).
[CrossRef]

2003

X. S. Cai, S. R. Li, J. Y. Fu, and Z. J. Zhao, “Study on measuring concentration of NO2 with DOAS method,” J. Eng. Thermosphys. 24, 351–353 (2003).

Y. C. Guo, T. H. Zhang, C. Gao, and X. E. Guo, “Differential optical absorption spectroscopy and applications in atmospheric monitoring studies,” J. Chongqing Univ. 26, 27–31 (2003).

2002

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

2000

T. B. Ryerson, E. J. Williams, and F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

1998

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

1993

Alnis, J.

Ball, S. M.

S. M. Ball, J. M. Langridge, and R. L. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68–74 (2004).
[CrossRef]

Cai, X. S.

X. S. Cai, S. R. Li, J. Y. Fu, and Z. J. Zhao, “Study on measuring concentration of NO2 with DOAS method,” J. Eng. Thermosphys. 24, 351–353 (2003).

Cao, Z.

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

Chen, L. M.

Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
[CrossRef]

Chen, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Chen, Z. C.

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

Edner, H.

Fehsenfeld, F. C.

T. B. Ryerson, E. J. Williams, and F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

Fu, J. Y.

X. S. Cai, S. R. Li, J. Y. Fu, and Z. J. Zhao, “Study on measuring concentration of NO2 with DOAS method,” J. Eng. Thermosphys. 24, 351–353 (2003).

Gao, C.

Y. C. Guo, T. H. Zhang, C. Gao, and X. E. Guo, “Differential optical absorption spectroscopy and applications in atmospheric monitoring studies,” J. Chongqing Univ. 26, 27–31 (2003).

Gao, X.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Gao, Z. H.

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

Guo, X. E.

Y. C. Guo, T. H. Zhang, C. Gao, and X. E. Guo, “Differential optical absorption spectroscopy and applications in atmospheric monitoring studies,” J. Chongqing Univ. 26, 27–31 (2003).

Guo, Y. C.

Y. C. Guo, T. H. Zhang, C. Gao, and X. E. Guo, “Differential optical absorption spectroscopy and applications in atmospheric monitoring studies,” J. Chongqing Univ. 26, 27–31 (2003).

Gustafsson, U.

Hanson, R. K.

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

Jeffries, J. B.

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

Jones, R. L.

S. M. Ball, J. M. Langridge, and R. L. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68–74 (2004).
[CrossRef]

Karpf, A.

Kassi, S.

I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
[CrossRef]

Kern, C.

Langridge, J. M.

S. M. Ball, J. M. Langridge, and R. L. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68–74 (2004).
[CrossRef]

Li, S. R.

X. S. Cai, S. R. Li, J. Y. Fu, and Z. J. Zhao, “Study on measuring concentration of NO2 with DOAS method,” J. Eng. Thermosphys. 24, 351–353 (2003).

Lin, H. Q.

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

Liu, J.

J. Liu and B. Z. Zhang, “Methods for weak signal detection,” in Technology of Weak Signal Detection (Academic, 2005), pp. 75–89.

Liu, J. T. C.

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

Lou, X.

Lv, Z.

Méjean, G.

I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
[CrossRef]

O’Brien, E. Sciamma

I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 1998).

Platt, U.

Ragnarson, P.

Rao, G. N.

Rippel, B.

Romanini, D.

I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
[CrossRef]

Ryerson, T. B.

T. B. Ryerson, E. J. Williams, and F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 1998).

Shen, Y.

Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
[CrossRef]

Somesfalean, G.

Spännare, S.

Svanberg, S.

Trick, S.

Ventrillard-Courtillot, I.

I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
[CrossRef]

Wang, S. S.

Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
[CrossRef]

Wayne, R. P.

R. P. Wayne, Chemistry of Atmospheres (Oxford University, 2000).

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

Williams, E. J.

T. B. Ryerson, E. J. Williams, and F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

Wu, T.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Xu, F.

Yang, J. H.

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

Yang, Y.

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

Zhang, B. Z.

J. Liu and B. Z. Zhang, “Methods for weak signal detection,” in Technology of Weak Signal Detection (Academic, 2005), pp. 75–89.

Zhang, T. H.

Y. C. Guo, T. H. Zhang, C. Gao, and X. E. Guo, “Differential optical absorption spectroscopy and applications in atmospheric monitoring studies,” J. Chongqing Univ. 26, 27–31 (2003).

Zhang, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Zhang, Y.

Zhang, Y. C.

Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
[CrossRef]

Zhang, Z.

Zhao, W.

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

Zhao, Z. J.

X. S. Cai, S. R. Li, J. Y. Fu, and Z. J. Zhao, “Study on measuring concentration of NO2 with DOAS method,” J. Eng. Thermosphys. 24, 351–353 (2003).

Zhou, B.

Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
[CrossRef]

Acta Opt. Sin.

Y. Shen, B. Zhou, S. S. Wang, Y. C. Zhang, and L. M. Chen, “Measurement of NO2 in cigarette main smoke by differential optical absorption spectroscopy,” Acta Opt. Sin. 28, 1934–1937 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2009).
[CrossRef]

I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010).
[CrossRef]

Chem. Phys. Lett.

S. M. Ball, J. M. Langridge, and R. L. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68–74 (2004).
[CrossRef]

J. Chongqing Univ.

Y. C. Guo, T. H. Zhang, C. Gao, and X. E. Guo, “Differential optical absorption spectroscopy and applications in atmospheric monitoring studies,” J. Chongqing Univ. 26, 27–31 (2003).

J. Eng. Thermosphys.

X. S. Cai, S. R. Li, J. Y. Fu, and Z. J. Zhao, “Study on measuring concentration of NO2 with DOAS method,” J. Eng. Thermosphys. 24, 351–353 (2003).

J. Geophys. Res.

T. B. Ryerson, E. J. Williams, and F. C. Fehsenfeld, “An efficient photolysis system for fast-response NO2 measurements,” J. Geophys. Res. 105, 26447–26461 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. T. C. Liu, R. K. Hanson, and J. B. Jeffries, “High-sensitivity absorption diagnostic for NO2 using a blue diode laser,” J. Quant. Spectrosc. Radiat. Transfer 72, 655–664 (2002).
[CrossRef]

Laser Technol.

Y. Yang, Z. H. Gao, Z. Cao, J. H. Yang, H. Q. Lin, and Z. C. Chen, “Detection of the NO2 based on laser spectrum,” Laser Technol. 36, 198–199 (2012).

Spectrochim. Acta Part A

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta Part A 54, 197–236 (1998).
[CrossRef]

Other

J. Liu and B. Z. Zhang, “Methods for weak signal detection,” in Technology of Weak Signal Detection (Academic, 2005), pp. 75–89.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, 1998).

R. P. Wayne, Chemistry of Atmospheres (Oxford University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Absorption cross section of NO2 (data from HITRAN) ranges from 430 to 470 nm at room temperature and (b) the measured intensity of diode laser line.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for NO2 monitoring.

Fig. 3.
Fig. 3.

Functional block diagram of correlation detection.

Fig. 4.
Fig. 4.

Result of fitting at least-squares method at room temperature and atmospheric pressure.

Tables (1)

Tables Icon

Table 1. Date of Concentration, Indication Error, and RMS Noise According to Fig. 4

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

It(λ)=I0(λ)exp[σ(λ)CL],
It(λ)I0(λ)[1σ(λ)LC],I0(λ)It(λ)I0(λ)σ(λ)LC,

Metrics