Abstract

In this work, we analyze the effects of Brillouin gain and Brillouin frequency drifts on the accuracy of the differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). In particular, we demonstrate numerically that the differential gain is highly sensitive to variations in the Brillouin gain and/or Brillouin shift occurring during the acquisition process, especially when operating with a small pulse pair duration difference. We also propose and demonstrate experimentally a method to compensate for these drifts and consequently improve measurement accuracy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
    [CrossRef]
  2. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48, 4297–4301 (2009).
    [CrossRef]
  3. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20, 6860–6869 (2012).
    [CrossRef]
  4. A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19, 19233–19244 (2011).
    [CrossRef]
  5. A. Minardo, R. Bernini, and L. Zeni, “Differential techniques for high-resolution BOTDA: an analytical approach,” IEEE Photon. Technol. Lett. 24, 1295–1297 (2012).
    [CrossRef]
  6. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31, 2526–2528 (2006).
    [CrossRef]
  7. K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34, 1381–1383 (2009).
    [CrossRef]
  8. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28, 2062–2067 (2010).
    [CrossRef]
  9. Y. Li, X. Bao, Y. Dong, and L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” J. Lightwave Technol. 28, 2621–2626(2010).
    [CrossRef]
  10. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007).
    [CrossRef]
  11. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
    [CrossRef]
  12. A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
    [CrossRef]
  13. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51, 1229–1235, (2012).
    [CrossRef]
  14. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25, 156–158 (2000).
    [CrossRef]

2012 (4)

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20, 6860–6869 (2012).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Differential techniques for high-resolution BOTDA: an analytical approach,” IEEE Photon. Technol. Lett. 24, 1295–1297 (2012).
[CrossRef]

A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
[CrossRef]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51, 1229–1235, (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (2)

2008 (1)

2007 (1)

2006 (1)

2000 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Bao, X.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Differential techniques for high-resolution BOTDA: an analytical approach,” IEEE Photon. Technol. Lett. 24, 1295–1297 (2012).
[CrossRef]

A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19, 19233–19244 (2011).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007).
[CrossRef]

Bolognini, G.

Chen, L.

Chin, S.

Coscetta, A.

A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
[CrossRef]

Di Pasquale, F.

Dong, Y.

He, Z.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Hotate, K.

Jackson, D. A.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Lecoeuche, V.

Li, W.

Li, Y.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Differential techniques for high-resolution BOTDA: an analytical approach,” IEEE Photon. Technol. Lett. 24, 1295–1297 (2012).
[CrossRef]

A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19, 19233–19244 (2011).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007).
[CrossRef]

Pannell, C. N.

Pirozzi, S.

A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
[CrossRef]

Primerov, N.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Song, K. Y.

Soto, M. A.

Taki, M.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Thévenaz, L.

Webb, D. J.

Zeni, L.

A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Differential techniques for high-resolution BOTDA: an analytical approach,” IEEE Photon. Technol. Lett. 24, 1295–1297 (2012).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Numerical analysis of single pulse and differential pulse-width pair BOTDA systems in the high spatial resolution regime,” Opt. Express 19, 19233–19244 (2011).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15, 10397–10407 (2007).
[CrossRef]

Zhang, H.

Zou, W.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

A. Minardo, R. Bernini, and L. Zeni, “Differential techniques for high-resolution BOTDA: an analytical approach,” IEEE Photon. Technol. Lett. 24, 1295–1297 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (4)

Opt. Lett. (3)

Smart Mater. Struct. (1)

A. Minardo, A. Coscetta, S. Pirozzi, R. Bernini, and L. Zeni, “Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements,” Smart Mater. Struct. 21, 125022 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Error in the Brillouin shift estimation at the middle section of a 50 MHz, 1 m long perturbation, as a function of the unbalance between the long pulse and the short pulse amplitudes.

Fig. 2.
Fig. 2.

BGS calculated at the center of the 50 MHz perturbation, for a pump pulse width of 11 ns (blue solid line) or 10 ns (red dashed line), and corresponding differential BGS (green dotted line). (a) refers to a balanced pulse pair, while (b) refers to a pulse pair with an amplitude unbalance of 5%. Differential spectra have been magnified by 10 to improve visibility.

Fig. 3.
Fig. 3.

Standard deviation of the Brillouin shift estimation at the middle section of a 50 MHz, 1 m long perturbation, as a function of the SNR of the original signals.

Fig. 4.
Fig. 4.

Estimated Brillouin frequency shift of the fiber as a function of the Brillouin frequency shift drift between the long pulse and the short pulse acquisition.

Fig. 5.
Fig. 5.

BGS computed at the middle section of a 10 m uniform fiber, for (a) a 10–13 ns pulse pair or (b) a 10–11 ns pulse pair (b). Brillouin shift is supposed to increase 5 MHz between the two acquisitions. In both figures, the blue solid line represents the BGS for the long pulse acquisition, the red dashed line represents the BGS for the short pulse acquisition, while the green dotted line is the differential BGS. Differential spectra have been magnified to improve visibility.

Fig. 6.
Fig. 6.

Standard deviation of the measured Brillouin frequency shifts, as achieved by processing the data at each fiber position before (blue solid line) and after (red dashed line) gain normalization.

Fig. 7.
Fig. 7.

Brillouin frequency shift profile reconstructions along the fiber attached to the heating tape. Times in the legend correspond to the times at the end of each acquisition.

Fig. 8.
Fig. 8.

Brillouin frequency shift profile reconstructions performed by using the data acquired at t1. Blue solid line is the reconstruction performed by using only the 10 ns data, the red dashed line is the reconstruction performed by using only the 11 ns data, while the green dotted line is the reconstruction performed by using the differential gain.

Fig. 9.
Fig. 9.

Brillouin frequency shift profile reconstructions along the fiber attached to the heating tape, after application of the proposed shifting method. Times in the legend correspond to the times at the end of each acquisition.

Fig. 10.
Fig. 10.

Brillouin frequency shift profile estimated at the position z=2m, during the warm-up (t0, t1, t2 and t3) or the warm down (t4, t5, t6 and t7) of the fiber, before and after application of the proposed shifting method.

Metrics