Abstract

A significant increase in the use of the herbicide glyphosate has generated many questions about its residual accumulation in the environment and possible damage to crops. In this study, changes in chlorophyll a (chl-a) fluorescence induced by glyphosate in three varieties of glyphosate-resistant soybean plants were determined with an in vivo analysis based on a portable laser-induced fluorescence system. Strong suppression of chl-a fluorescence was observed for all plants treated with the herbicide. Moreover, the ratio of the emission bands in the red and far-red regions (685nm/735nm) indicates that the application of glyphosate led to chlorophyll degradation. The results also indicated that the use of glyphosate, even at concentrations recommended by the manufacturer, suppressed chl-a fluorescence. In summary, this study shows that fluorescence spectroscopy can detect, in vivo, very early changes in the photosynthetic status of transgenic soybeans treated with this herbicide.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011).
    [CrossRef]
  2. M. P. Fuck and M. B. Bonacelli, “Sementes geneticamente modificadas: (in) segurança e racionalidade na adoção de transgênicos no Brasil e na Argentina,” Rev. Iberoam. Cienc. Tecnol. Soc. 4, 9–30 (2009).
  3. F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
    [CrossRef]
  4. M. A. Benamú, M. I. Schneider, and N. E. Sánchez, “Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory,” Chemosphere 78, 871–876 (2010).
    [CrossRef]
  5. K. N. Reddy, N. Bellaloui, and R. M. Zablotowicz, “Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn,” J. Agric. Food Chem. 58, 3646–3650 (2010).
    [CrossRef]
  6. A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
    [CrossRef]
  7. N. R. Baker, and E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” J. Exp. Bot. 55, 1607–1621 (2004).
    [CrossRef]
  8. C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
    [CrossRef]
  9. S. M. Cicero, R. V. D. Schoor, and H. Jalink, “Use of chlorophyll fluorescence sorting to improve soybean seed quality,” Rev. Bras. Sementes 31, 145–151 (2009).
    [CrossRef]
  10. J. F. C. Goncalves and U. M. Santo, “Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance,” Braz. J. Plant Physiol. 17, 307–313 (2005).
    [CrossRef]
  11. P. J. Ralph, “Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence,” Aquat. Bot. 66, 141–152 (2000).
    [CrossRef]
  12. W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
    [CrossRef]
  13. K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
    [CrossRef]
  14. E. C. Lins, J. Belasque, and L. G. Marcassa, “Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic,” Appl. Opt. 49, 663–667 (2010).
    [CrossRef]
  15. E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
    [CrossRef]
  16. K. Sonoike, “Photoinhibition of photosystem I,” Physiol. Plant. 142, 56–64 (2011).
    [CrossRef]
  17. C. Buschmann, “Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves,” Photosynth. Res. 92, 261–271 (2007).
    [CrossRef]
  18. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
    [CrossRef]
  19. Z. Benediktyova and L. Nedbal, “Imaging of multi-color fluorescence emission from leaf tissues,” Photosynth. Res. 102, 169–175 (2009).
    [CrossRef]
  20. J. Belasque, M. C. G. Gasparoto, and L. G. Marcassa, “Detection of mechanical and disease stress in citrus by fluorescence spectroscopy,” Appl. Opt. 47, 1922–1926(2008).
    [CrossRef]
  21. J. Belasque, M. C. G. Gasparoto, L. G. Marcassa, E. C. Lins, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Precision Agric. 10, 319–330 (2009).
    [CrossRef]
  22. L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
    [CrossRef]
  23. A. M. Jenks and M. P. Hasegawa, Plant Abiotic Stress(Blackwell, 2005).
  24. L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
    [CrossRef]

2011 (5)

L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011).
[CrossRef]

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
[CrossRef]

K. Sonoike, “Photoinhibition of photosystem I,” Physiol. Plant. 142, 56–64 (2011).
[CrossRef]

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

2010 (5)

E. C. Lins, J. Belasque, and L. G. Marcassa, “Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic,” Appl. Opt. 49, 663–667 (2010).
[CrossRef]

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

M. A. Benamú, M. I. Schneider, and N. E. Sánchez, “Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory,” Chemosphere 78, 871–876 (2010).
[CrossRef]

K. N. Reddy, N. Bellaloui, and R. M. Zablotowicz, “Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn,” J. Agric. Food Chem. 58, 3646–3650 (2010).
[CrossRef]

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

2009 (4)

M. P. Fuck and M. B. Bonacelli, “Sementes geneticamente modificadas: (in) segurança e racionalidade na adoção de transgênicos no Brasil e na Argentina,” Rev. Iberoam. Cienc. Tecnol. Soc. 4, 9–30 (2009).

S. M. Cicero, R. V. D. Schoor, and H. Jalink, “Use of chlorophyll fluorescence sorting to improve soybean seed quality,” Rev. Bras. Sementes 31, 145–151 (2009).
[CrossRef]

Z. Benediktyova and L. Nedbal, “Imaging of multi-color fluorescence emission from leaf tissues,” Photosynth. Res. 102, 169–175 (2009).
[CrossRef]

J. Belasque, M. C. G. Gasparoto, L. G. Marcassa, E. C. Lins, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Precision Agric. 10, 319–330 (2009).
[CrossRef]

2008 (3)

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
[CrossRef]

J. Belasque, M. C. G. Gasparoto, and L. G. Marcassa, “Detection of mechanical and disease stress in citrus by fluorescence spectroscopy,” Appl. Opt. 47, 1922–1926(2008).
[CrossRef]

2007 (2)

C. Buschmann, “Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves,” Photosynth. Res. 92, 261–271 (2007).
[CrossRef]

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

2005 (1)

J. F. C. Goncalves and U. M. Santo, “Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance,” Braz. J. Plant Physiol. 17, 307–313 (2005).
[CrossRef]

2004 (1)

N. R. Baker, and E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” J. Exp. Bot. 55, 1607–1621 (2004).
[CrossRef]

2000 (1)

P. J. Ralph, “Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence,” Aquat. Bot. 66, 141–152 (2000).
[CrossRef]

1999 (1)

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
[CrossRef]

Agati, G.

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

Bagnato, V. S.

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

J. Belasque, M. C. G. Gasparoto, L. G. Marcassa, E. C. Lins, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Precision Agric. 10, 319–330 (2009).
[CrossRef]

Baker, N. R.

N. R. Baker, and E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” J. Exp. Bot. 55, 1607–1621 (2004).
[CrossRef]

Bassi, R.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Belasque, J.

Bellaloui, N.

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

K. N. Reddy, N. Bellaloui, and R. M. Zablotowicz, “Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn,” J. Agric. Food Chem. 58, 3646–3650 (2010).
[CrossRef]

Benamú, M. A.

M. A. Benamú, M. I. Schneider, and N. E. Sánchez, “Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory,” Chemosphere 78, 871–876 (2010).
[CrossRef]

Benediktyova, Z.

Z. Benediktyova and L. Nedbal, “Imaging of multi-color fluorescence emission from leaf tissues,” Photosynth. Res. 102, 169–175 (2009).
[CrossRef]

Boekema, E. J.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Bonacelli, M. B.

M. P. Fuck and M. B. Bonacelli, “Sementes geneticamente modificadas: (in) segurança e racionalidade na adoção de transgênicos no Brasil e na Argentina,” Rev. Iberoam. Cienc. Tecnol. Soc. 4, 9–30 (2009).

Botero, E. R.

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

Brinatti, A. M.

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Buenasera, K.

K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
[CrossRef]

Buschmann, C.

C. Buschmann, “Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves,” Photosynth. Res. 92, 261–271 (2007).
[CrossRef]

Caires, A. R. L.

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

Cecchi, G.

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

Cerovic, Z. G.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
[CrossRef]

Cicero, S. M.

S. M. Cicero, R. V. D. Schoor, and H. Jalink, “Use of chlorophyll fluorescence sorting to improve soybean seed quality,” Rev. Bras. Sementes 31, 145–151 (2009).
[CrossRef]

Dekker, J. P.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Esperancini, M. S. T.

F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
[CrossRef]

Falcão, E. A.

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

Falco, W. F.

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

Favoretto, C. M.

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Fuck, M. P.

M. P. Fuck and M. B. Bonacelli, “Sementes geneticamente modificadas: (in) segurança e racionalidade na adoção de transgênicos no Brasil e na Argentina,” Rev. Iberoam. Cienc. Tecnol. Soc. 4, 9–30 (2009).

Furlaneto, F. P. B.

F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
[CrossRef]

Gasparoto, M. C. G.

J. Belasque, M. C. G. Gasparoto, L. G. Marcassa, E. C. Lins, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Precision Agric. 10, 319–330 (2009).
[CrossRef]

J. Belasque, M. C. G. Gasparoto, and L. G. Marcassa, “Detection of mechanical and disease stress in citrus by fluorescence spectroscopy,” Appl. Opt. 47, 1922–1926(2008).
[CrossRef]

Gavassoni, W. L.

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

Giardi, M. T.

K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
[CrossRef]

Goncalves, J. F. C.

J. F. C. Goncalves and U. M. Santo, “Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance,” Braz. J. Plant Physiol. 17, 307–313 (2005).
[CrossRef]

Gonçalves, D.

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Hasegawa, M. P.

A. M. Jenks and M. P. Hasegawa, Plant Abiotic Stress(Blackwell, 2005).

Jalink, H.

S. M. Cicero, R. V. D. Schoor, and H. Jalink, “Use of chlorophyll fluorescence sorting to improve soybean seed quality,” Rev. Bras. Sementes 31, 145–151 (2009).
[CrossRef]

Jamil, C.

L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011).
[CrossRef]

Jansson, S.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Jenks, A. M.

A. M. Jenks and M. P. Hasegawa, Plant Abiotic Stress(Blackwell, 2005).

Jensem, E. P.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Kanthack, R. A. D.

F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
[CrossRef]

Kremer, R. J.

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

Lambreva, M.

K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
[CrossRef]

Leister, D.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Leite, W. C.

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Lins, E. C.

E. C. Lins, J. Belasque, and L. G. Marcassa, “Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic,” Appl. Opt. 49, 663–667 (2010).
[CrossRef]

J. Belasque, M. C. G. Gasparoto, L. G. Marcassa, E. C. Lins, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Precision Agric. 10, 319–330 (2009).
[CrossRef]

Lognoli, D.

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

Marcassa, L. G.

Milori, D. M. B. P.

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Morales, F.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
[CrossRef]

Moya, I.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
[CrossRef]

Nedbal, L.

Z. Benediktyova and L. Nedbal, “Imaging of multi-color fluorescence emission from leaf tissues,” Photosynth. Res. 102, 169–175 (2009).
[CrossRef]

Ojima, A. L. R. O.

F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
[CrossRef]

Oliveira, R. S.

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

Oliveira, S. L.

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

Palombi, L.

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

Pontim, B. C.

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

Raimondi, V.

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

Ralph, P. J.

P. J. Ralph, “Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence,” Aquat. Bot. 66, 141–152 (2000).
[CrossRef]

Rea, G.

K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
[CrossRef]

Reco, P. C.

F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
[CrossRef]

Reddy, K. N.

K. N. Reddy, N. Bellaloui, and R. M. Zablotowicz, “Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn,” J. Agric. Food Chem. 58, 3646–3650 (2010).
[CrossRef]

Robert, J. K.

L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011).
[CrossRef]

Robinson, C.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Rosa, J. A.

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Rosenqvist, E.

N. R. Baker, and E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” J. Exp. Bot. 55, 1607–1621 (2004).
[CrossRef]

Rubem, S. O.

L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011).
[CrossRef]

Saab, S. C.

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Samson, G.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
[CrossRef]

Sánchez, N. E.

M. A. Benamú, M. I. Schneider, and N. E. Sánchez, “Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory,” Chemosphere 78, 871–876 (2010).
[CrossRef]

Santiago, E. F.

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

Santo, U. M.

J. F. C. Goncalves and U. M. Santo, “Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance,” Braz. J. Plant Physiol. 17, 307–313 (2005).
[CrossRef]

Santos, T. S.

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

Scheller, H. V.

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Scherer, M. D.

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

Schneider, M. I.

M. A. Benamú, M. I. Schneider, and N. E. Sánchez, “Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory,” Chemosphere 78, 871–876 (2010).
[CrossRef]

Schoor, R. V. D.

S. M. Cicero, R. V. D. Schoor, and H. Jalink, “Use of chlorophyll fluorescence sorting to improve soybean seed quality,” Rev. Bras. Sementes 31, 145–151 (2009).
[CrossRef]

Sonoike, K.

K. Sonoike, “Photoinhibition of photosystem I,” Physiol. Plant. 142, 56–64 (2011).
[CrossRef]

Toci, G.

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

Touloupakis, E.

K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
[CrossRef]

Tremblay, N.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
[CrossRef]

Visentainer, J. V.

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

Yamada, T.

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

Zablotowicz, R. M.

K. N. Reddy, N. Bellaloui, and R. M. Zablotowicz, “Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn,” J. Agric. Food Chem. 58, 3646–3650 (2010).
[CrossRef]

Zobiole, L. H. S.

L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011).
[CrossRef]

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

Agronomie (1)

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543–578 (1999).
[CrossRef]

Anal. Bioanal. Chem. (1)

K. Buenasera, M. Lambreva, G. Rea, E. Touloupakis, and M. T. Giardi, “Technological applications of chlorophyll afluorescence for the assessment of environmental pollutants,” Anal. Bioanal. Chem. 401, 1139–1151 (2011).
[CrossRef]

Appl. Opt. (2)

Aquat. Bot. (1)

P. J. Ralph, “Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence,” Aquat. Bot. 66, 141–152 (2000).
[CrossRef]

Biochim. Biophys. Acta (1)

E. P. Jensem, R. Bassi, E. J. Boekema, J. P. Dekker, S. Jansson, D. Leister, C. Robinson, and H. V. Scheller, “Structure, function and regulation of plant photosystem I,” Biochim. Biophys. Acta 1767, 335–352 (2007).
[CrossRef]

Braz. J. Plant Physiol. (1)

J. F. C. Goncalves and U. M. Santo, “Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance,” Braz. J. Plant Physiol. 17, 307–313 (2005).
[CrossRef]

Chemosphere (1)

M. A. Benamú, M. I. Schneider, and N. E. Sánchez, “Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory,” Chemosphere 78, 871–876 (2010).
[CrossRef]

Ciênc. Agrotecnol. (1)

F. P. B. Furlaneto, P. C. Reco, R. A. D. Kanthack, M. S. T. Esperancini, and A. L. R. O. Ojima, “Soja transgênica versus convencional: estimativa dos custos operacionais de produção na região do Médio Paranapanema, Estado de São Paulo,” Ciênc. Agrotecnol. 32, 1935–1940 (2008).
[CrossRef]

J. Agric. Food Chem. (2)

K. N. Reddy, N. Bellaloui, and R. M. Zablotowicz, “Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn,” J. Agric. Food Chem. 58, 3646–3650 (2010).
[CrossRef]

L. H. S. Zobiole, R. S. Oliveira, J. V. Visentainer, R. J. Kremer, N. Bellaloui, and T. Yamada, “Glyphosate affects seed composition in glyphosate-resistant soybean,” J. Agric. Food Chem. 58, 4517–4522 (2010).
[CrossRef]

J. Exp. Bot. (1)

N. R. Baker, and E. Rosenqvist, “Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities,” J. Exp. Bot. 55, 1607–1621 (2004).
[CrossRef]

J. Fluoresc. (1)

A. R. L. Caires, M. D. Scherer, T. S. Santos, B. C. Pontim, W. L. Gavassoni, and S. L. Oliveira, “Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence,” J. Fluoresc. 20, 645–649 (2010).
[CrossRef]

J. Photochem. Photobiol. A: Chem. (1)

W. F. Falco, E. R. Botero, E. A. Falcão, E. F. Santiago, V. S. Bagnato, and A. R. L. Caires, “In vivo observation of chlorophyll fluorescence quenching induced by gold Nanoparticles,” J. Photochem. Photobiol. A: Chem. 225, 65–71 (2011).
[CrossRef]

Pestic. Biochem. Physiol. (1)

L. H. S. Zobiole, J. K. Robert, S. O. Rubem, and C. Jamil, “Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.),” Pestic. Biochem. Physiol. 99, 53–60 (2011).
[CrossRef]

Photosynth. Res. (3)

Z. Benediktyova and L. Nedbal, “Imaging of multi-color fluorescence emission from leaf tissues,” Photosynth. Res. 102, 169–175 (2009).
[CrossRef]

C. Buschmann, “Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves,” Photosynth. Res. 92, 261–271 (2007).
[CrossRef]

L. Palombi, G. Cecchi, D. Lognoli, V. Raimondi, G. Toci, and G. Agati, “A retrieval algorithm to evaluate the photosystem I and photosystem II spectral contributions to leaf chlorophyll fluorescence at physiological temperatures,” Photosynth. Res. 108, 225–239 (2011).
[CrossRef]

Physiol. Plant. (1)

K. Sonoike, “Photoinhibition of photosystem I,” Physiol. Plant. 142, 56–64 (2011).
[CrossRef]

Precision Agric. (1)

J. Belasque, M. C. G. Gasparoto, L. G. Marcassa, E. C. Lins, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Precision Agric. 10, 319–330 (2009).
[CrossRef]

Quím. Nova (1)

C. M. Favoretto, D. Gonçalves, D. M. B. P. Milori, J. A. Rosa, W. C. Leite, A. M. Brinatti, and S. C. Saab, “Determination of humification degree of organic matter of an oxisol and of its organo-mineral fractions,” Quím. Nova 31, 1994–1998 (2008).
[CrossRef]

Rev. Bras. Sementes (1)

S. M. Cicero, R. V. D. Schoor, and H. Jalink, “Use of chlorophyll fluorescence sorting to improve soybean seed quality,” Rev. Bras. Sementes 31, 145–151 (2009).
[CrossRef]

Rev. Iberoam. Cienc. Tecnol. Soc. (1)

M. P. Fuck and M. B. Bonacelli, “Sementes geneticamente modificadas: (in) segurança e racionalidade na adoção de transgênicos no Brasil e na Argentina,” Rev. Iberoam. Cienc. Tecnol. Soc. 4, 9–30 (2009).

Other (1)

A. M. Jenks and M. P. Hasegawa, Plant Abiotic Stress(Blackwell, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scheme of the experimental setup for fluorescence measurements.

Fig. 2.
Fig. 2.

Image of the first trifoliate leaves of the variety BRS 245RR at 9 days after glyphosate application: (a) control, (b) 3.75g·L1, c 7.50g·L1, and d 11.25g·L1.

Fig. 3.
Fig. 3.

Suppression of chl-a fluorescence induced by glyphosate. The fluorescence spectra were obtained by exciting the soybean leaves at 405 nm.

Fig. 4.
Fig. 4.

Time course of fluorescence suppression for different doses of glyphosate: (a) 3.75g·L1, (b) 7.50g·L1, and (c) 11.25g·L1. (A) represents the emission spectra before glyphosate application, and (B)–(F) represent the emission spectra at 3, 51, 123, 171, and 291 h after glyphosate application, respectively. The fluorescence spectra of variety BRS 245RR were collected from leaves excited at 405 nm.

Fig. 5.
Fig. 5.

Time course of fluorescence suppression for different doses of glyphosate: (a) 3.75g·L1, (b) 7.50g·L1, and (c) 11.25g·L1. (A) represents the emission spectra before glyphosate application, and (B)–(F) represent the emission spectra at 3, 51, 123, 171, and 291 h after glyphosate application, respectively. The fluorescence spectra of variety BRS 295RR were collected from leaves excited at 405 nm.

Fig. 6.
Fig. 6.

Time course of fluorescence suppression for different doses of glyphosate: (a) 3.75g·L1, (b) 7.50g·L1, (c) 11.25g·L1. (A) represents the emission spectra before glyphosate application, and (B)–(F) represent the emission spectra at 3, 51, 123, 171, and 291 h after glyphosate application, respectively. The fluorescence spectra of variety BRS 245RR were collected from leaves excited at 532 nm.

Fig. 7.
Fig. 7.

Fluorescence ratio of soybean plants treated with different doses of glyphosate. The F683/F733 ratio represents the relationship between the peak fluorescence intensity at 683 and 733 nm. The fluorescence ratio was obtained by exciting the soybean leaves at 405 nm.

Fig. 8.
Fig. 8.

Fluorescence ratio of soybean plants treated with different doses of glyphosate. The F683/F733 ratio represents the relationship between the peak fluorescence intensity at 683 and 733 nm. The fluorescence ratio was obtained by exciting the soybean leaves at 532 nm.

Metrics