A. Ashok, S. C. C. Bailey, M. Hultmark, and A. J. Smits, “Hot-wire spatial resolution effects in measurements of grid-generated turbulence,” Exp. Fluids 53, 1713–1722 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the uncertainty of digital PIV and PTV near walls,” Exp. Fluids 52, 1641–1656 (2012).

[CrossRef]

S. Discetti and R. J. Adrian, “High accuracy measurement of magnification for monocular PIV,” Meas. Sci. Technol. 23, 117001 (2012).

S. Scharnowski, R. Hain, and C. J. Kähler, “Reynolds stress estimation up to single-pixel resolution using PIV measurements,” Exp. Fluids 52, 985–1002 (2012).

[CrossRef]

M. Hultmark, A. Ashok, and A. J. Smits, “A new criterion for end-conduction effects in hot-wire anemometry,” Meas. Sci. Technol. 22, 055401 (2011).

[CrossRef]

A. Segalini, A. Cimarelli, J.-D. Rüuedi, E. D. Angelis, and A. Talamelli, “Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow,” Meas. Sci. Technol. 22, 105408 (2011).

[CrossRef]

M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, “Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe,” Exp. Fluids 51, 1521–1527 (2011).

[CrossRef]

R. Örlü and P. Schlatter, “On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows,” Phys. Fluids 23, 021704 (2011).

[CrossRef]

P. Alfredsson, R. Örlü, and P. Schlatter, “The viscous sublayer revisited-exploiting self-similarity to determine the wall position and friction velocity,” Exp. Fluids 51, 271–280 (2011).

[CrossRef]

P. H. Alfredsson and R. Örlü, “The diagnostic plot a litmus test for wall bounded turbulence data,” European J. Mech. B, Fluids 29, 403–406 (2010).

[CrossRef]

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

N. Hutchins, T. B. Nickels, I. Marusic, and M. S. Chong, “Hot-wire spatial resolution issues in wallbounded turbulence,” J. Fluid Mech. 635, 103–136 (2009).

[CrossRef]

C. C. Chin, N. Hutchins, A. S. H. Ooi, and I. Marusic, “Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence,” Meas. Sci. Technol. 20, 115401 (2009).

[CrossRef]

K. T. Lowe and R. L. Simpson, “An advanced laser-Doppler velocimeter for full-vector particle position and velocity measurements,” Meas. Sci. Technol. 20, 045402 (2009).

[CrossRef]

H. M. Nagib, K. A. Chauhan, and P. A. Monkewitz, “Approach to an asymptotic state for zero pressure gradient turbulent boundary layers,” Phil. Trans. R. Soc. A 365, 755–770 (2007).

[CrossRef]

F. Onofri, “Three interfering beams in laser-Doppler velocimetry for particle position and microflow velocity profile measurements,” Appl. Opt. 45, 3317–3324 (2006).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327–341 (2006).

[CrossRef]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 224–2280 (2005).

[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).

[CrossRef]

T. B. Nickels, “Inner scaling for wall-bounded flows subject to large pressure gradients,” J. Fluid Mech. 521, 217–239 (2004).

[CrossRef]

J. Westerweel, P. F. Geelhoed, and R. Lindken, “Single-pixel resolution ensemble correlation for micro-PIV applications,” Exp. Fluids 37, 375–384 (2004).

[CrossRef]

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).

[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser-Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979–1989 (2002).

[CrossRef]

C. J. Kähler, B. Sammler, and J. Kompenhans, “Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,” Exp. Fluids 33, 736–742 (2002).

M. Fischer, J. Jovanovic, and F. Durst, “Reynolds number effects in the near-wall region of turbulent channel flows,” Phys. Fluids 13, 1755 (2001).

[CrossRef]

A. K. Prasad, “Stereoscopic particle image velocimetry,” Exp. Fluids 29, 103–116 (2000).

[CrossRef]

H. H. Fernholz and P. J. Finley, “The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data,” Prog. Aerosp. Sci. 32, 245–311 (1996).

[CrossRef]

F. Durst, J. Jovanovic, and J. Sender, “LDA measurements in the nearwall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–335 (1995).

[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).

[CrossRef]

F. Durst, R. Müller, and J. Jovanovic, “Determination of the measuring position in laser-Doppler anemometry,” Exp. Fluids 6, 105–110 (1988).

F. H. Clauser, “The turbulent boundary layer,” Adv. Appl. Mech. 4, 1–51 (1956).

[CrossRef]

S. Discetti and R. J. Adrian, “High accuracy measurement of magnification for monocular PIV,” Meas. Sci. Technol. 23, 117001 (2012).

P. Alfredsson, R. Örlü, and P. Schlatter, “The viscous sublayer revisited-exploiting self-similarity to determine the wall position and friction velocity,” Exp. Fluids 51, 271–280 (2011).

[CrossRef]

P. H. Alfredsson and R. Örlü, “The diagnostic plot a litmus test for wall bounded turbulence data,” European J. Mech. B, Fluids 29, 403–406 (2010).

[CrossRef]

A. Segalini, A. Cimarelli, J.-D. Rüuedi, E. D. Angelis, and A. Talamelli, “Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow,” Meas. Sci. Technol. 22, 105408 (2011).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).

[CrossRef]

A. Ashok, S. C. C. Bailey, M. Hultmark, and A. J. Smits, “Hot-wire spatial resolution effects in measurements of grid-generated turbulence,” Exp. Fluids 53, 1713–1722 (2012).

[CrossRef]

M. Hultmark, A. Ashok, and A. J. Smits, “A new criterion for end-conduction effects in hot-wire anemometry,” Meas. Sci. Technol. 22, 055401 (2011).

[CrossRef]

A. Ashok, S. C. C. Bailey, M. Hultmark, and A. J. Smits, “Hot-wire spatial resolution effects in measurements of grid-generated turbulence,” Exp. Fluids 53, 1713–1722 (2012).

[CrossRef]

M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, “Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe,” Exp. Fluids 51, 1521–1527 (2011).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 224–2280 (2005).

[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).

[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser-Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979–1989 (2002).

[CrossRef]

H. M. Nagib, K. A. Chauhan, and P. A. Monkewitz, “Approach to an asymptotic state for zero pressure gradient turbulent boundary layers,” Phil. Trans. R. Soc. A 365, 755–770 (2007).

[CrossRef]

C. C. Chin, N. Hutchins, A. S. H. Ooi, and I. Marusic, “Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence,” Meas. Sci. Technol. 20, 115401 (2009).

[CrossRef]

N. Hutchins, T. B. Nickels, I. Marusic, and M. S. Chong, “Hot-wire spatial resolution issues in wallbounded turbulence,” J. Fluid Mech. 635, 103–136 (2009).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the uncertainty of digital PIV and PTV near walls,” Exp. Fluids 52, 1641–1656 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “High resolution velocity profile measurements in turbulent boundary layers,” at 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Portugal, 9–12 July 2012.

A. Segalini, A. Cimarelli, J.-D. Rüuedi, E. D. Angelis, and A. Talamelli, “Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow,” Meas. Sci. Technol. 22, 105408 (2011).

[CrossRef]

F. H. Clauser, “The turbulent boundary layer,” Adv. Appl. Mech. 4, 1–51 (1956).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 224–2280 (2005).

[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).

[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser-Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979–1989 (2002).

[CrossRef]

S. Discetti and R. J. Adrian, “High accuracy measurement of magnification for monocular PIV,” Meas. Sci. Technol. 23, 117001 (2012).

V. Strunck, H. Müller, and D. Dopheide, “Traversionsfreie LDA-Grenzschichtmessungen mit Mikrometerauflösung im Meßvolumen,” in “Lasermethoden in der Strömungsmeßtechnik, Essen, 28.-30.09,” (1998).

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

M. Fischer, J. Jovanovic, and F. Durst, “Reynolds number effects in the near-wall region of turbulent channel flows,” Phys. Fluids 13, 1755 (2001).

[CrossRef]

F. Durst, J. Jovanovic, and J. Sender, “LDA measurements in the nearwall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–335 (1995).

[CrossRef]

F. Durst, R. Müller, and J. Jovanovic, “Determination of the measuring position in laser-Doppler anemometry,” Exp. Fluids 6, 105–110 (1988).

H. H. Fernholz and P. J. Finley, “The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data,” Prog. Aerosp. Sci. 32, 245–311 (1996).

[CrossRef]

H. H. Fernholz and P. J. Finley, “The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data,” Prog. Aerosp. Sci. 32, 245–311 (1996).

[CrossRef]

M. Fischer, J. Jovanovic, and F. Durst, “Reynolds number effects in the near-wall region of turbulent channel flows,” Phys. Fluids 13, 1755 (2001).

[CrossRef]

J. Westerweel, P. F. Geelhoed, and R. Lindken, “Single-pixel resolution ensemble correlation for micro-PIV applications,” Exp. Fluids 37, 375–384 (2004).

[CrossRef]

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).

[CrossRef]

S. Scharnowski, R. Hain, and C. J. Kähler, “Reynolds stress estimation up to single-pixel resolution using PIV measurements,” Exp. Fluids 52, 985–1002 (2012).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

A. Ashok, S. C. C. Bailey, M. Hultmark, and A. J. Smits, “Hot-wire spatial resolution effects in measurements of grid-generated turbulence,” Exp. Fluids 53, 1713–1722 (2012).

[CrossRef]

M. Hultmark, A. Ashok, and A. J. Smits, “A new criterion for end-conduction effects in hot-wire anemometry,” Meas. Sci. Technol. 22, 055401 (2011).

[CrossRef]

M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, “Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe,” Exp. Fluids 51, 1521–1527 (2011).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

N. Hutchins, T. B. Nickels, I. Marusic, and M. S. Chong, “Hot-wire spatial resolution issues in wallbounded turbulence,” J. Fluid Mech. 635, 103–136 (2009).

[CrossRef]

C. C. Chin, N. Hutchins, A. S. H. Ooi, and I. Marusic, “Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence,” Meas. Sci. Technol. 20, 115401 (2009).

[CrossRef]

M. Fischer, J. Jovanovic, and F. Durst, “Reynolds number effects in the near-wall region of turbulent channel flows,” Phys. Fluids 13, 1755 (2001).

[CrossRef]

F. Durst, J. Jovanovic, and J. Sender, “LDA measurements in the nearwall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–335 (1995).

[CrossRef]

F. Durst, R. Müller, and J. Jovanovic, “Determination of the measuring position in laser-Doppler anemometry,” Exp. Fluids 6, 105–110 (1988).

S. Scharnowski, R. Hain, and C. J. Kähler, “Reynolds stress estimation up to single-pixel resolution using PIV measurements,” Exp. Fluids 52, 985–1002 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the uncertainty of digital PIV and PTV near walls,” Exp. Fluids 52, 1641–1656 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).

[CrossRef]

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327–341 (2006).

[CrossRef]

C. J. Kähler, B. Sammler, and J. Kompenhans, “Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,” Exp. Fluids 33, 736–742 (2002).

C. J. Kähler, S. Scharnowski, and C. Cierpka, “High resolution velocity profile measurements in turbulent boundary layers,” at 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Portugal, 9–12 July 2012.

C. J. Kähler, B. Sammler, and J. Kompenhans, “Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,” Exp. Fluids 33, 736–742 (2002).

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

J. Westerweel, P. F. Geelhoed, and R. Lindken, “Single-pixel resolution ensemble correlation for micro-PIV applications,” Exp. Fluids 37, 375–384 (2004).

[CrossRef]

K. T. Lowe and R. L. Simpson, “An advanced laser-Doppler velocimeter for full-vector particle position and velocity measurements,” Meas. Sci. Technol. 20, 045402 (2009).

[CrossRef]

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

C. C. Chin, N. Hutchins, A. S. H. Ooi, and I. Marusic, “Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence,” Meas. Sci. Technol. 20, 115401 (2009).

[CrossRef]

N. Hutchins, T. B. Nickels, I. Marusic, and M. S. Chong, “Hot-wire spatial resolution issues in wallbounded turbulence,” J. Fluid Mech. 635, 103–136 (2009).

[CrossRef]

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

H. M. Nagib, K. A. Chauhan, and P. A. Monkewitz, “Approach to an asymptotic state for zero pressure gradient turbulent boundary layers,” Phil. Trans. R. Soc. A 365, 755–770 (2007).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser-Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979–1989 (2002).

[CrossRef]

V. Strunck, H. Müller, and D. Dopheide, “Traversionsfreie LDA-Grenzschichtmessungen mit Mikrometerauflösung im Meßvolumen,” in “Lasermethoden in der Strömungsmeßtechnik, Essen, 28.-30.09,” (1998).

F. Durst, R. Müller, and J. Jovanovic, “Determination of the measuring position in laser-Doppler anemometry,” Exp. Fluids 6, 105–110 (1988).

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

H. M. Nagib, K. A. Chauhan, and P. A. Monkewitz, “Approach to an asymptotic state for zero pressure gradient turbulent boundary layers,” Phil. Trans. R. Soc. A 365, 755–770 (2007).

[CrossRef]

N. Hutchins, T. B. Nickels, I. Marusic, and M. S. Chong, “Hot-wire spatial resolution issues in wallbounded turbulence,” J. Fluid Mech. 635, 103–136 (2009).

[CrossRef]

T. B. Nickels, “Inner scaling for wall-bounded flows subject to large pressure gradients,” J. Fluid Mech. 521, 217–239 (2004).

[CrossRef]

C. C. Chin, N. Hutchins, A. S. H. Ooi, and I. Marusic, “Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence,” Meas. Sci. Technol. 20, 115401 (2009).

[CrossRef]

P. Alfredsson, R. Örlü, and P. Schlatter, “The viscous sublayer revisited-exploiting self-similarity to determine the wall position and friction velocity,” Exp. Fluids 51, 271–280 (2011).

[CrossRef]

R. Örlü and P. Schlatter, “On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows,” Phys. Fluids 23, 021704 (2011).

[CrossRef]

P. H. Alfredsson and R. Örlü, “The diagnostic plot a litmus test for wall bounded turbulence data,” European J. Mech. B, Fluids 29, 403–406 (2010).

[CrossRef]

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327–341 (2006).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).

[CrossRef]

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).

[CrossRef]

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).

[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser-Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979–1989 (2002).

[CrossRef]

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).

[CrossRef]

A. Segalini, A. Cimarelli, J.-D. Rüuedi, E. D. Angelis, and A. Talamelli, “Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow,” Meas. Sci. Technol. 22, 105408 (2011).

[CrossRef]

C. J. Kähler, B. Sammler, and J. Kompenhans, “Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,” Exp. Fluids 33, 736–742 (2002).

S. Scharnowski, R. Hain, and C. J. Kähler, “Reynolds stress estimation up to single-pixel resolution using PIV measurements,” Exp. Fluids 52, 985–1002 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the uncertainty of digital PIV and PTV near walls,” Exp. Fluids 52, 1641–1656 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “High resolution velocity profile measurements in turbulent boundary layers,” at 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Portugal, 9–12 July 2012.

R. Örlü and P. Schlatter, “On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows,” Phys. Fluids 23, 021704 (2011).

[CrossRef]

P. Alfredsson, R. Örlü, and P. Schlatter, “The viscous sublayer revisited-exploiting self-similarity to determine the wall position and friction velocity,” Exp. Fluids 51, 271–280 (2011).

[CrossRef]

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327–341 (2006).

[CrossRef]

A. Segalini, A. Cimarelli, J.-D. Rüuedi, E. D. Angelis, and A. Talamelli, “Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow,” Meas. Sci. Technol. 22, 105408 (2011).

[CrossRef]

F. Durst, J. Jovanovic, and J. Sender, “LDA measurements in the nearwall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–335 (1995).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).

[CrossRef]

K. T. Lowe and R. L. Simpson, “An advanced laser-Doppler velocimeter for full-vector particle position and velocity measurements,” Meas. Sci. Technol. 20, 045402 (2009).

[CrossRef]

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

A. Ashok, S. C. C. Bailey, M. Hultmark, and A. J. Smits, “Hot-wire spatial resolution effects in measurements of grid-generated turbulence,” Exp. Fluids 53, 1713–1722 (2012).

[CrossRef]

M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, “Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe,” Exp. Fluids 51, 1521–1527 (2011).

[CrossRef]

M. Hultmark, A. Ashok, and A. J. Smits, “A new criterion for end-conduction effects in hot-wire anemometry,” Meas. Sci. Technol. 22, 055401 (2011).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

V. Strunck, H. Müller, and D. Dopheide, “Traversionsfreie LDA-Grenzschichtmessungen mit Mikrometerauflösung im Meßvolumen,” in “Lasermethoden in der Strömungsmeßtechnik, Essen, 28.-30.09,” (1998).

A. Segalini, A. Cimarelli, J.-D. Rüuedi, E. D. Angelis, and A. Talamelli, “Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow,” Meas. Sci. Technol. 22, 105408 (2011).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, “Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe,” Exp. Fluids 51, 1521–1527 (2011).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

J. Westerweel, P. F. Geelhoed, and R. Lindken, “Single-pixel resolution ensemble correlation for micro-PIV applications,” Exp. Fluids 37, 375–384 (2004).

[CrossRef]

F. H. Clauser, “The turbulent boundary layer,” Adv. Appl. Mech. 4, 1–51 (1956).

[CrossRef]

L. Büttner, J. Czarske, and H. Knuppertz, “Laser-doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44, 224–2280 (2005).

[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501–2510 (2005).

[CrossRef]

F. Onofri, “Three interfering beams in laser-Doppler velocimetry for particle position and microflow velocity profile measurements,” Appl. Opt. 45, 3317–3324 (2006).

[CrossRef]

P. van de Kamp, “Problems of long-focus photographic astrometry,” Appl. Opt. 2, 9–15 (1963).

[CrossRef]

W. Zang and A. K. Prasad, “Performance evaluation of a Scheimpflug stereocamera for particle image velocimetry,” Appl. Opt. 36, 8738–8744 (1997).

[CrossRef]

P. H. Alfredsson and R. Örlü, “The diagnostic plot a litmus test for wall bounded turbulence data,” European J. Mech. B, Fluids 29, 403–406 (2010).

[CrossRef]

D. Poggi, A. Porporato, and L. Ridolfi, “An experimental contribution to near-wall measurements by means of a special laser Doppler anemometry technique,” Exp. Fluids 32, 366–375 (2002).

[CrossRef]

F. Durst, R. Müller, and J. Jovanovic, “Determination of the measuring position in laser-Doppler anemometry,” Exp. Fluids 6, 105–110 (1988).

A. Ashok, S. C. C. Bailey, M. Hultmark, and A. J. Smits, “Hot-wire spatial resolution effects in measurements of grid-generated turbulence,” Exp. Fluids 53, 1713–1722 (2012).

[CrossRef]

P. Alfredsson, R. Örlü, and P. Schlatter, “The viscous sublayer revisited-exploiting self-similarity to determine the wall position and friction velocity,” Exp. Fluids 51, 271–280 (2011).

[CrossRef]

A. K. Prasad, “Stereoscopic particle image velocimetry,” Exp. Fluids 29, 103–116 (2000).

[CrossRef]

C. J. Kähler, B. Sammler, and J. Kompenhans, “Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,” Exp. Fluids 33, 736–742 (2002).

C. J. Kähler, U. Scholz, and J. Ortmanns, “Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV,” Exp. Fluids 41, 327–341 (2006).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the resolution limit of digital particle image velocimetry,” Exp. Fluids 52, 1629–1639 (2012).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “On the uncertainty of digital PIV and PTV near walls,” Exp. Fluids 52, 1641–1656 (2012).

[CrossRef]

K. Shirai, T. Pfister, L. Büttner, J. Czarske, H. Müller, S. Becker, H. Lienhart, and F. Durst, “Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor,” Exp. Fluids 40, 473–481 (2006).

[CrossRef]

M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, “Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe,” Exp. Fluids 51, 1521–1527 (2011).

[CrossRef]

J. Westerweel, P. F. Geelhoed, and R. Lindken, “Single-pixel resolution ensemble correlation for micro-PIV applications,” Exp. Fluids 37, 375–384 (2004).

[CrossRef]

S. Scharnowski, R. Hain, and C. J. Kähler, “Reynolds stress estimation up to single-pixel resolution using PIV measurements,” Exp. Fluids 52, 985–1002 (2012).

[CrossRef]

T. B. Nickels, “Inner scaling for wall-bounded flows subject to large pressure gradients,” J. Fluid Mech. 521, 217–239 (2004).

[CrossRef]

N. Hutchins, T. B. Nickels, I. Marusic, and M. S. Chong, “Hot-wire spatial resolution issues in wallbounded turbulence,” J. Fluid Mech. 635, 103–136 (2009).

[CrossRef]

S. C. C. Bailey, G. J. Kunkel, M. Hultmark, M. Vallikivi, J. P. Hill, K. A. Meyer, C. Tsay, C. B. Arnold, and A. J. Smits, “Turbulence measurements using a nanoscale thermal anemometry probe,” J. Fluid Mech. 663, 160–179 (2010).

[CrossRef]

F. Durst, J. Jovanovic, and J. Sender, “LDA measurements in the nearwall region of a turbulent pipe flow,” J. Fluid Mech. 295, 305–335 (1995).

[CrossRef]

M. Hultmark, A. Ashok, and A. J. Smits, “A new criterion for end-conduction effects in hot-wire anemometry,” Meas. Sci. Technol. 22, 055401 (2011).

[CrossRef]

C. C. Chin, N. Hutchins, A. S. H. Ooi, and I. Marusic, “Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence,” Meas. Sci. Technol. 20, 115401 (2009).

[CrossRef]

A. Segalini, A. Cimarelli, J.-D. Rüuedi, E. D. Angelis, and A. Talamelli, “Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow,” Meas. Sci. Technol. 22, 105408 (2011).

[CrossRef]

K. T. Lowe and R. L. Simpson, “An advanced laser-Doppler velocimeter for full-vector particle position and velocity measurements,” Meas. Sci. Technol. 20, 045402 (2009).

[CrossRef]

S. Discetti and R. J. Adrian, “High accuracy measurement of magnification for monocular PIV,” Meas. Sci. Technol. 23, 117001 (2012).

M. P. Arroyo and C. A. Greated, “Stereoscopic particle image velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).

[CrossRef]

J. Czarske, L. Büttner, T. Razik, and H. Müller, “Boundary layer velocity measurements by a laser-Doppler profile sensor with micrometer spatial resolution,” Meas. Sci. Technol. 13, 1979–1989 (2002).

[CrossRef]

H. M. Nagib, K. A. Chauhan, and P. A. Monkewitz, “Approach to an asymptotic state for zero pressure gradient turbulent boundary layers,” Phil. Trans. R. Soc. A 365, 755–770 (2007).

[CrossRef]

M. Fischer, J. Jovanovic, and F. Durst, “Reynolds number effects in the near-wall region of turbulent channel flows,” Phys. Fluids 13, 1755 (2001).

[CrossRef]

I. Marusic, B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smit, and K. R. Sreenivasan, “Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues,” Phys. Fluids 22, 065103 (2010).

R. Örlü and P. Schlatter, “On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows,” Phys. Fluids 23, 021704 (2011).

[CrossRef]

H. H. Fernholz and P. J. Finley, “The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data,” Prog. Aerosp. Sci. 32, 245–311 (1996).

[CrossRef]

C. J. Kähler, S. Scharnowski, and C. Cierpka, “High resolution velocity profile measurements in turbulent boundary layers,” at 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Portugal, 9–12 July 2012.

V. Strunck, H. Müller, and D. Dopheide, “Traversionsfreie LDA-Grenzschichtmessungen mit Mikrometerauflösung im Meßvolumen,” in “Lasermethoden in der Strömungsmeßtechnik, Essen, 28.-30.09,” (1998).