Abstract

We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA’s control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Hinton, “Photonic switching fabrics,” IEEE Commun. Mag. 28(4), 71–89 (1990).
    [CrossRef]
  2. J. Yates, J. Lacey, and D. Everitt, “Blocking in multi-wavelength TDM networks,” Telecommun Syst. 12, 1–19 (1999).
    [CrossRef]
  3. T. El-Bawab and J. Shin, “Optical packet switching in core network between vision and reality,” IEEE Commun. Mag. l40(9), 60–65 (2002).
    [CrossRef]
  4. N. Chi, Z. Wang, and S. Yu, “A large variable delay, fast reconfigurable optical buffer based on multi-loop configuration and an optical crosspoint switch matrix,” J. Lightwave Technol. 24, 2994–3000 (2006).
    [CrossRef]
  5. J. Yao, P. Barnsley, N. Walker, and M. O’Mahony, “Time-slot interchanging using semiconductor laser amplifiers,” Electron. Lett. 29, 1053–1054 (1993).
    [CrossRef]
  6. R. A. Thompson and P. P. Giordano, “An experimental photonic time-slot interchanger using optical fibers as re-entrant delay-line memories,” J. Lightwave Technol. 5, 154–162 (1987).
    [CrossRef]
  7. M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
    [CrossRef]
  8. Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
    [CrossRef]
  9. R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, “40  Gb/s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett. 16, 692–694 (2004).
    [CrossRef]
  10. K. Seppanen, “Shared OTDM packet compressor and decompressor,” Electron. Lett. 36, 2090–2092 (2000).
    [CrossRef]
  11. N. Calabretta, Y. Liu, F. M. Huijskens, M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 22, 372–381 (2004).
    [CrossRef]
  12. H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
    [CrossRef]
  13. M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
    [CrossRef]

2010 (1)

Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
[CrossRef]

2009 (1)

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

2006 (1)

2004 (2)

N. Calabretta, Y. Liu, F. M. Huijskens, M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 22, 372–381 (2004).
[CrossRef]

R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, “40  Gb/s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett. 16, 692–694 (2004).
[CrossRef]

2003 (1)

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

2002 (2)

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

T. El-Bawab and J. Shin, “Optical packet switching in core network between vision and reality,” IEEE Commun. Mag. l40(9), 60–65 (2002).
[CrossRef]

2000 (1)

K. Seppanen, “Shared OTDM packet compressor and decompressor,” Electron. Lett. 36, 2090–2092 (2000).
[CrossRef]

1999 (1)

J. Yates, J. Lacey, and D. Everitt, “Blocking in multi-wavelength TDM networks,” Telecommun Syst. 12, 1–19 (1999).
[CrossRef]

1993 (1)

J. Yao, P. Barnsley, N. Walker, and M. O’Mahony, “Time-slot interchanging using semiconductor laser amplifiers,” Electron. Lett. 29, 1053–1054 (1993).
[CrossRef]

1990 (1)

H. S. Hinton, “Photonic switching fabrics,” IEEE Commun. Mag. 28(4), 71–89 (1990).
[CrossRef]

1987 (1)

R. A. Thompson and P. P. Giordano, “An experimental photonic time-slot interchanger using optical fibers as re-entrant delay-line memories,” J. Lightwave Technol. 5, 154–162 (1987).
[CrossRef]

Barnsley, P.

J. Yao, P. Barnsley, N. Walker, and M. O’Mahony, “Time-slot interchanging using semiconductor laser amplifiers,” Electron. Lett. 29, 1053–1054 (1993).
[CrossRef]

Brener, I.

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

Calabretta, N.

Cardakli, M. C.

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

Cheng, M.

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

Chi, N.

Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
[CrossRef]

N. Chi, Z. Wang, and S. Yu, “A large variable delay, fast reconfigurable optical buffer based on multi-loop configuration and an optical crosspoint switch matrix,” J. Lightwave Technol. 24, 2994–3000 (2006).
[CrossRef]

de Waardt, H.

Dorren, H. J. S.

N. Calabretta, Y. Liu, F. M. Huijskens, M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 22, 372–381 (2004).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

El-Bawab, T.

T. El-Bawab and J. Shin, “Optical packet switching in core network between vision and reality,” IEEE Commun. Mag. l40(9), 60–65 (2002).
[CrossRef]

Everitt, D.

J. Yates, J. Lacey, and D. Everitt, “Blocking in multi-wavelength TDM networks,” Telecommun Syst. 12, 1–19 (1999).
[CrossRef]

Fang, W. L.

Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
[CrossRef]

Fejer, M. M.

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

Giordano, P. P.

R. A. Thompson and P. P. Giordano, “An experimental photonic time-slot interchanger using optical fibers as re-entrant delay-line memories,” J. Lightwave Technol. 5, 154–162 (1987).
[CrossRef]

Gurkan, D.

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

Havstad, S. A.

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

Hill, M. T.

N. Calabretta, Y. Liu, F. M. Huijskens, M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 22, 372–381 (2004).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Hiltunen, J.

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

Hinton, H. S.

H. S. Hinton, “Photonic switching fabrics,” IEEE Commun. Mag. 28(4), 71–89 (1990).
[CrossRef]

Huang, B.

Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
[CrossRef]

Huijskens, F. M.

Khoe, G. D.

Khoe, G.-D.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Lacey, J.

J. Yates, J. Lacey, and D. Everitt, “Blocking in multi-wavelength TDM networks,” Telecommun Syst. 12, 1–19 (1999).
[CrossRef]

Lenstra, D.

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Liu, Y.

N. Calabretta, Y. Liu, F. M. Huijskens, M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,” J. Lightwave Technol. 22, 372–381 (2004).
[CrossRef]

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

Myllylä, R.

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

Nakahara, T.

R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, “40  Gb/s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett. 16, 692–694 (2004).
[CrossRef]

O’Mahony, M.

J. Yao, P. Barnsley, N. Walker, and M. O’Mahony, “Time-slot interchanging using semiconductor laser amplifiers,” Electron. Lett. 29, 1053–1054 (1993).
[CrossRef]

Parameswaran, K. R.

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

Seppanen, K.

K. Seppanen, “Shared OTDM packet compressor and decompressor,” Electron. Lett. 36, 2090–2092 (2000).
[CrossRef]

Shao, Y. F.

Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
[CrossRef]

Shin, J.

T. El-Bawab and J. Shin, “Optical packet switching in core network between vision and reality,” IEEE Commun. Mag. l40(9), 60–65 (2002).
[CrossRef]

Suzuki, H.

R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, “40  Gb/s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett. 16, 692–694 (2004).
[CrossRef]

Takahashi, R.

R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, “40  Gb/s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett. 16, 692–694 (2004).
[CrossRef]

Takenouchi, H.

R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, “40  Gb/s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett. 16, 692–694 (2004).
[CrossRef]

Thompson, R. A.

R. A. Thompson and P. P. Giordano, “An experimental photonic time-slot interchanger using optical fibers as re-entrant delay-line memories,” J. Lightwave Technol. 5, 154–162 (1987).
[CrossRef]

Walker, N.

J. Yao, P. Barnsley, N. Walker, and M. O’Mahony, “Time-slot interchanging using semiconductor laser amplifiers,” Electron. Lett. 29, 1053–1054 (1993).
[CrossRef]

Wang, Q.

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

Wang, Y. P.

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

Wang, Z.

Willner, A. E.

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

Wu, C. Q.

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

Yao, J.

J. Yao, P. Barnsley, N. Walker, and M. O’Mahony, “Time-slot interchanging using semiconductor laser amplifiers,” Electron. Lett. 29, 1053–1054 (1993).
[CrossRef]

Yates, J.

J. Yates, J. Lacey, and D. Everitt, “Blocking in multi-wavelength TDM networks,” Telecommun Syst. 12, 1–19 (1999).
[CrossRef]

Yu, S.

Zhang, J. W.

Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
[CrossRef]

Electron. Lett. (2)

J. Yao, P. Barnsley, N. Walker, and M. O’Mahony, “Time-slot interchanging using semiconductor laser amplifiers,” Electron. Lett. 29, 1053–1054 (1993).
[CrossRef]

K. Seppanen, “Shared OTDM packet compressor and decompressor,” Electron. Lett. 36, 2090–2092 (2000).
[CrossRef]

IEEE Commun. Mag. (3)

H. S. Hinton, “Photonic switching fabrics,” IEEE Commun. Mag. 28(4), 71–89 (1990).
[CrossRef]

T. El-Bawab and J. Shin, “Optical packet switching in core network between vision and reality,” IEEE Commun. Mag. l40(9), 60–65 (2002).
[CrossRef]

Y. F. Shao, J. W. Zhang, W. L. Fang, B. Huang, and N. Chi, “A flexible optical packet compression and routing scheme by using an active vertical coupler-based optical crosspoint switch matrix,” IEEE Commun. Mag. 48(8), 146–151 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. J. S. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G.-D. Khoe, “Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,” IEEE J. Quantum Electron. 39, 141–148 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Cheng, C. Q. Wu, J. Hiltunen, Y. P. Wang, Q. Wang, and R. Myllylä, “A variable delay optical buffer based on nonlinear polarization rotation in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 21, 1885–1887 (2009).
[CrossRef]

R. Takahashi, T. Nakahara, H. Takenouchi, and H. Suzuki, “40  Gb/s label recognition and 1×4 self-routing using self-serial-to-parallel conversion,” IEEE Photon. Technol. Lett. 16, 692–694 (2004).
[CrossRef]

M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency- generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002).
[CrossRef]

J. Lightwave Technol. (3)

Telecommun Syst. (1)

J. Yates, J. Lacey, and D. Everitt, “Blocking in multi-wavelength TDM networks,” Telecommun Syst. 12, 1–19 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup of two optical buffers cascaded.

Fig. 2.
Fig. 2.

Input (a) and output packets (b) of experiment on the implement of all-optical TSI on two packets A and B and their enlarged version (c).

Fig. 3.
Fig. 3.

Experimental result of TSI on two packets A and B at the injected bias currents of (a) 90, (b) 140, (c) 190, and (d) 200 mA.

Fig. 4.
Fig. 4.

Principle scheme of interchanging input packets ABC to the output packets CBA.

Fig. 5.
Fig. 5.

Experiment result of interchanging input packets ABC (a) to the output packets CBA (b) and the corresponding detail of output packets C, B, and A (c)

Fig. 6.
Fig. 6.

Experiment result of interchanging input packets ABCD (a) to the output packets BADC with packet A being switched with coupling ratio 50% (b) and 100% (c) and the corresponding output waveform of packets A, B, C, and D (d)

Fig. 7.
Fig. 7.

Principle of optical packets compression.

Fig. 8.
Fig. 8.

Experimental sequence of input packets (a), output packets (b), detailed information of output packets (c) and between output packets B and C (d) for three packets compression experiment.

Metrics