Abstract

Hyperspectral absorption spectroscopy is being used to monitor gas temperature, velocity, pressure, and H2O mole fraction in a research-grade pulsed-detonation combustor (PDC) at the Air Force Research Laboratory. The hyperspectral source employed is termed the TDM 3-FDML because it consists of three time-division-multiplexed (TDM) Fourier-domain mode-locked (FDML) lasers. This optical-fiber-based source monitors sufficient spectral information in the H2O absorption spectrum near 1350 nm to permit measurements over the wide range of conditions encountered throughout the PDC cycle. Doppler velocimetry based on absorption features is accomplished using a counterpropagating beam approach that is designed to minimize common-mode flow noise. The PDC in this study is operated in two configurations: one in which the combustion tube exhausts directly to the ambient environment and another in which it feeds an automotive-style turbocharger to assess the performance of a detonation-driven turbine. Because the enthalpy flow [kilojoule/second] is important in assessing the performance of the PDC in various configurations, it is calculated from the measured gas properties.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kailasanath, “Recent developments in the research on pulse detonation engines,” AIAA J. 41, 145–159 (2003).
    [CrossRef]
  2. T. M. Helfrich, F. R. Schauer, R. P. Bradley, and J. L. Hoke, “Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), paper 2007-234.
  3. F. Schauer, R. Bradley, and J. L. Hoke, “Interaction of a pulsed detonation engine with a turbine,” in 41st AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2003), paper 2003-0891.
  4. K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.
  5. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
    [CrossRef]
  6. S. Sanders, D. Mattison, L. Ma, J. Jeffries, and R. Hanson, “Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation,” Opt. Express 10, 505–514 (2002).
    [CrossRef]
  7. D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
    [CrossRef]
  8. Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
    [CrossRef]
  9. T. Kraetschmer, “Hyperspectral lasers for spectroscopic measurements in the near-infrared,” Ph.D. dissertation (University of Wisconsin, 2009).
  10. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33, 738–740 (2008).
    [CrossRef]
  11. A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt. 49, 4963–4972 (2010).
    [CrossRef]
  12. X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011).
    [CrossRef]
  13. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
    [CrossRef]
  14. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009).
    [CrossRef]
  15. V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
    [CrossRef]
  16. V. Nagali, J. T. Herbon, D. C. Horning, D. F. Davidson, and R. K. Hanson, “Shock-tube study of high-pressure H2O spectroscopy,” Appl. Opt. 38, 6942–6950 (1999).
    [CrossRef]
  17. X. An, A. W. Caswell, and S. T. Sanders, “Quantifying the temperature sensitivity of practical spectra using a new spectroscopic quantity: frequency-dependent Lower-State Energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 779–785(2011).
    [CrossRef]
  18. H. B. Ebrahimi and C. L. Merkle, “Numerical simulation of a pulse detonation engine with hydrogen fuels,” J. Propul. Power 18, 1042–1048 (2002).
    [CrossRef]
  19. W. Cai, L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50 kHz rate 2D imaging of temperature and H2O concentration at exhaust plane of J85 engine by hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).
    [CrossRef]
  20. J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
    [CrossRef]
  21. J. W. Walewski, J. A. Filipa, and S. T. Sanders, “Optical beating of polychromatic light and its impact on time-resolved spectroscopy. Part I: theory,” Appl. Spectrosc. 62, 220–229 (2008).
    [CrossRef]
  22. L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra,” Appl. Opt. 46, 4117–4124 (2007).
    [CrossRef]
  23. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
    [CrossRef]
  24. K. H. Lyle, J. B. Jeffries, and R. K. Hanson, “Diode-laser sensor for air-mass flux 1: design and wind-tunnel validation,” AIAA J. 45, 2204–2212 (2007).
    [CrossRef]
  25. M. F. Miller, W. J. Kessler, and M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
    [CrossRef]
  26. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef]
  27. F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, and X. Chang, “Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors,” Appl. Opt. 50, 6697–6707 (2011).
    [CrossRef]
  28. B. J. McBride, M. J. Zehe, and S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, NASA/TP-2002-211556, Sept. 2002, http://www.grc.nasa.gov/WWW/CEAWeb/TP-2002-211556.pdf .

2013 (1)

2011 (4)

F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, and X. Chang, “Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors,” Appl. Opt. 50, 6697–6707 (2011).
[CrossRef]

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011).
[CrossRef]

X. An, A. W. Caswell, and S. T. Sanders, “Quantifying the temperature sensitivity of practical spectra using a new spectroscopic quantity: frequency-dependent Lower-State Energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 779–785(2011).
[CrossRef]

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

2010 (2)

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt. 49, 4963–4972 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (3)

2005 (1)

Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
[CrossRef]

2003 (2)

K. Kailasanath, “Recent developments in the research on pulse detonation engines,” AIAA J. 41, 145–159 (2003).
[CrossRef]

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

2002 (2)

2000 (1)

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

1999 (1)

1997 (1)

1996 (1)

1993 (1)

Allen, M. G.

An, X.

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011).
[CrossRef]

X. An, A. W. Caswell, and S. T. Sanders, “Quantifying the temperature sensitivity of practical spectra using a new spectroscopic quantity: frequency-dependent Lower-State Energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 779–785(2011).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

Baer, D. S.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Baldwin, J. A.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Barbour, E. A.

Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
[CrossRef]

Biedermann, B.

Bradley, R.

F. Schauer, R. Bradley, and J. L. Hoke, “Interaction of a pulsed detonation engine with a turbine,” in 41st AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2003), paper 2003-0891.

Bradley, R. P.

T. M. Helfrich, F. R. Schauer, R. P. Bradley, and J. L. Hoke, “Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), paper 2007-234.

Brophy, C. M.

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

Cai, W.

Caswell, A. W.

W. Cai, L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50 kHz rate 2D imaging of temperature and H2O concentration at exhaust plane of J85 engine by hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).
[CrossRef]

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011).
[CrossRef]

X. An, A. W. Caswell, and S. T. Sanders, “Quantifying the temperature sensitivity of practical spectra using a new spectroscopic quantity: frequency-dependent Lower-State Energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 779–785(2011).
[CrossRef]

A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt. 49, 4963–4972 (2010).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra,” Appl. Opt. 46, 4117–4124 (2007).
[CrossRef]

Chang, X.

Chen, L.

Dagel, D.

Davidson, D. F.

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Ebrahimi, H. B.

H. B. Ebrahimi and C. L. Merkle, “Numerical simulation of a pulse detonation engine with hydrogen fuels,” J. Propul. Power 18, 1042–1048 (2002).
[CrossRef]

Filipa, J. A.

Fujimoto, J. G.

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Gord, J. R.

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Gu, H.

Hanson, R.

Hanson, R. K.

K. H. Lyle, J. B. Jeffries, and R. K. Hanson, “Diode-laser sensor for air-mass flux 1: design and wind-tunnel validation,” AIAA J. 45, 2204–2212 (2007).
[CrossRef]

Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
[CrossRef]

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

V. Nagali, J. T. Herbon, D. C. Horning, D. F. Davidson, and R. K. Hanson, “Shock-tube study of high-pressure H2O spectroscopy,” Appl. Opt. 38, 6942–6950 (1999).
[CrossRef]

V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997).
[CrossRef]

L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef]

Helfrich, T. M.

T. M. Helfrich, F. R. Schauer, R. P. Bradley, and J. L. Hoke, “Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), paper 2007-234.

Herbon, J. T.

Herold, R. E.

Hinckley, K. M.

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

Hoke, J. L.

F. Schauer, R. Bradley, and J. L. Hoke, “Interaction of a pulsed detonation engine with a turbine,” in 41st AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2003), paper 2003-0891.

T. M. Helfrich, F. R. Schauer, R. P. Bradley, and J. L. Hoke, “Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), paper 2007-234.

K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.

Horning, D. C.

Huber, R.

Jeffries, J.

Jeffries, J. B.

K. H. Lyle, J. B. Jeffries, and R. K. Hanson, “Diode-laser sensor for air-mass flux 1: design and wind-tunnel validation,” AIAA J. 45, 2204–2212 (2007).
[CrossRef]

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

Jenkins, T. P.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Jirauschek, C.

Kailasanath, K.

K. Kailasanath, “Recent developments in the research on pulse detonation engines,” AIAA J. 41, 145–159 (2003).
[CrossRef]

Kessler, W. J.

King, P. I.

K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.

Kraetschmer, T.

Kranendonk, L. A.

Li, F.

Li, X.

Li, Z.

Lipor, J. J.

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011).
[CrossRef]

Lyle, K. H.

K. H. Lyle, J. B. Jeffries, and R. K. Hanson, “Diode-laser sensor for air-mass flux 1: design and wind-tunnel validation,” AIAA J. 45, 2204–2212 (2007).
[CrossRef]

Ma, L.

Mattison, D.

Mattison, D. W.

Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
[CrossRef]

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

Merkle, C. L.

H. B. Ebrahimi and C. L. Merkle, “Numerical simulation of a pulse detonation engine with hydrogen fuels,” J. Propul. Power 18, 1042–1048 (2002).
[CrossRef]

Miller, M. F.

Morris, C. I.

Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
[CrossRef]

Nagali, V.

Okura, Y.

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

Owens, Z. C.

Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
[CrossRef]

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Philippe, L. C.

Plemmons, D. H.

Rein, K.

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Rouser, K. P.

K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.

Roy, S.

Sanders, S.

Sanders, S. T.

W. Cai, L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50 kHz rate 2D imaging of temperature and H2O concentration at exhaust plane of J85 engine by hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).
[CrossRef]

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011).
[CrossRef]

X. An, A. W. Caswell, and S. T. Sanders, “Quantifying the temperature sensitivity of practical spectra using a new spectroscopic quantity: frequency-dependent Lower-State Energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 779–785(2011).
[CrossRef]

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt. 49, 4963–4972 (2010).
[CrossRef]

J. W. Walewski, J. A. Filipa, and S. T. Sanders, “Optical beating of polychromatic light and its impact on time-resolved spectroscopy. Part I: theory,” Appl. Spectrosc. 62, 220–229 (2008).
[CrossRef]

T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett. 33, 738–740 (2008).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

L. A. Kranendonk, A. W. Caswell, and S. T. Sanders, “Robust method for calculating temperature, pressure and absorber mole fraction from broadband spectra,” Appl. Opt. 46, 4117–4124 (2007).
[CrossRef]

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Schauer, F.

F. Schauer, R. Bradley, and J. L. Hoke, “Interaction of a pulsed detonation engine with a turbine,” in 41st AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2003), paper 2003-0891.

Schauer, F. R.

K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.

T. M. Helfrich, F. R. Schauer, R. P. Bradley, and J. L. Hoke, “Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), paper 2007-234.

Shouse, D. T.

Sondergaard, R.

K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.

Takami, K.

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Urata, Y.

Walewski, J. W.

Whitney, J. M.

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

Yu, X.

Zhao, Y.

AIAA J. (2)

K. Kailasanath, “Recent developments in the research on pulse detonation engines,” AIAA J. 41, 145–159 (2003).
[CrossRef]

K. H. Lyle, J. B. Jeffries, and R. K. Hanson, “Diode-laser sensor for air-mass flux 1: design and wind-tunnel validation,” AIAA J. 45, 2204–2212 (2007).
[CrossRef]

Appl. Opt. (7)

Appl. Spectrosc. (1)

IEEE Sens. J. (1)

J. M. Whitney, K. Takami, S. T. Sanders, and Y. Okura, “Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments,” IEEE Sens. J. 11, 3295–3302 (2011).
[CrossRef]

J. Propul. Power (2)

H. B. Ebrahimi and C. L. Merkle, “Numerical simulation of a pulse detonation engine with hydrogen fuels,” J. Propul. Power 18, 1042–1048 (2002).
[CrossRef]

D. W. Mattison, C. M. Brophy, S. T. Sanders, L. Ma, K. M. Hinckley, J. B. Jeffries, and R. K. Hanson, “Pulse detonation engine characterization and control using tunable diode-laser sensors,” J. Propul. Power 19, 568–572 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

X. An, A. W. Caswell, and S. T. Sanders, “Quantifying the temperature sensitivity of practical spectra using a new spectroscopic quantity: frequency-dependent Lower-State Energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 779–785(2011).
[CrossRef]

X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-State energy,” J. Quant. Spectrosc. Radiat. Transfer 112, 2355–2362 (2011).
[CrossRef]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. Combust. Inst. (2)

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000).
[CrossRef]

Z. C. Owens, D. W. Mattison, E. A. Barbour, C. I. Morris, and R. K. Hanson, “Flowfield characterization and simulation validation of multiple-geometry PDEs using cesium-based velocimetry,” Proc. Combust. Inst. 30, 2791–2798 (2005).
[CrossRef]

Other (5)

T. Kraetschmer, “Hyperspectral lasers for spectroscopic measurements in the near-infrared,” Ph.D. dissertation (University of Wisconsin, 2009).

T. M. Helfrich, F. R. Schauer, R. P. Bradley, and J. L. Hoke, “Ignition and detonation-initiation characteristics of hydrogen and hydrocarbon fuels in a PDE,” in 45th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2007), paper 2007-234.

F. Schauer, R. Bradley, and J. L. Hoke, “Interaction of a pulsed detonation engine with a turbine,” in 41st AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2003), paper 2003-0891.

K. P. Rouser, P. I. King, F. R. Schauer, R. Sondergaard, and J. L. Hoke, “Unsteady performance of a turbine driven by a pulse detonation engine,” in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (AIAA, 2010), paper 2010-1116.

B. J. McBride, M. J. Zehe, and S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, NASA/TP-2002-211556, Sept. 2002, http://www.grc.nasa.gov/WWW/CEAWeb/TP-2002-211556.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

System design of TDM 3-FDML hyperspectral source. Three Fourier-domain mode-locked lasers, each scanning a unique portion of the H2O absorption spectrum, were used to optimize the temperature sensitivity of the measurement strategy over the range of temperatures encountered in the PDC. The independent laser cavities were synchronized by a master time source, and each operated 120 deg out of phase from its neighbors to allow time multiplexing of the three output scans.

Fig. 2.
Fig. 2.

Details of the OTS, including components used to establish the approximately counterpropagating velocimetry beams. A custom combination SMF/MMF fiber-connector assembly was used to transmit and receive signals within each of the FC connectors shown. The components used for the thermometry beams (oriented perpendicular to the page) are not shown here but are identical, except that ordinary connectors were used to establish only unidirectional optical access at these locations.

Fig. 3.
Fig. 3.

Details of the FC/APC custom combination SMF/MMF connector used to achieve approximately counterpropagating laser beams for velocimetry: (a) photograph of the connector from the side, (b) schematic showing the geometry of the structure behind the 8 deg angle-polished fiber end facet. Because of the 210μm offset between the two fiber cores, the resulting beams are 1.2deg away from the ideal antiparallel arrangement.

Fig. 4.
Fig. 4.

Schematic of the experimental setup, showing the PDC configuration with the turbine assembly included. Two OTSs were used, one before and one after the PDC-driven turbocharger. The light from the remotely located TDM 3-FDML laser system was delivered by SMFs to each OTS for simultaneous measurements of temperature, pressure, H2O mole fraction, and gas velocity at the two measurement stations. The transmitted light was collected by MMFs and directed onto photodetectors. The resulting electrical signal was sent via coaxial cable to the data-acquisition system for analog-to-digital conversion and subsequent storage in computer memory for postprocessing. In addition to the laser absorption measurements, ion probes were utilized in the PDC for monitoring the strength of the detonation wave, and piezoresistive pressure transducers in each OTS provided a concomitant measure of gas pressure.

Fig. 5.
Fig. 5.

Top panel: measured signals for the three measurement beams (two for velocity and one for thermometry), the laser reference beam, and the MZI (for wavelength monitoring) for a single scan of the TDM 3-FDML. Bottom panel: corresponding absorption spectrum for the three measurement beams. Precise phase matching of the laser reference signal and the measurement signals for common-mode noise rejection was performed, resulting in a minimal detectable absorbance of 1×103.

Fig. 6.
Fig. 6.

Top panel: example measured spectrum and best-fit simulation for a case in which the gas temperature in the PDC is low (332 K). Notice that the spectrum is not continuous but rather is composed of three distinct wavelength scans of 5cm1 each. Bottom panel: measured spectrum and best-fit simulation for a higher temperature (921 K) condition in the PDC. The differences in relative absorption within each spectrum provide the basis for inferring the gas temperature.

Fig. 7.
Fig. 7.

Doppler shift of the absorption feature measured simultaneously with the two 45 deg beams. The shift is both left and right of the 90 deg beam, as expected.

Fig. 8.
Fig. 8.

Temperature results from PDC operation at three different equivalence ratios. The inset graph highlights the temperature time history over the short period of time immediately before and shortly after passage of the detonation wave. While not visible in these plots, 60 μs of temperature data is absent immediately following passage of the detonation wave because of the combination of extreme beam steering and pressure broadening.

Fig. 9.
Fig. 9.

Top panel: velocity results for two cycles of the PDC. Positive velocity indicates flow in the head-to-tail direction of the tube. The large upward spikes result from the strong induced flow immediately after the detonation wave passes the sensor location. Flow reversal is evident shortly after peak velocity is obtained along with oscillatory dampening of the system until the tube is purged and refilled with a fresh premixed fuel-and-air charge. Bottom panel: the precision of the velocity measurement was calculated by subtracting the smoothed velocity from the measured velocity and computing the standard deviation for 200 consecutive points.

Fig. 10.
Fig. 10.

Temperature, pressure, H2O mole fraction, velocity, and enthalpy results obtained with the TDM 3-FDML system both upstream and downstream of the turbine for two cycles of the PDC. The enthalpy flux provided by these time-resolved measurements is useful for formulating an expression for the isentropic efficiency of a detonation-driven turbine. Also shown are results of a concomitant measurement of pressure using a piezoresistive pressure transducer; these data compare favorably with the results of an optical-absorption-based measurement of pressure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ννo=U·k2π.
U=c2Δνd,uνo.
m˙·h¯t=(ρVA)·(xH2Oh¯H2O+xN2h¯N2+12MWmixV2).

Metrics