Abstract

We have developed a variable-power zoom system that incorporates fluidic lenses and has no moving parts. The designed system applies two single-chamber plano–convex fluid singlets, each with their own distinct design, as well as a conventional refractive lens. In this paper, we combine the two fluid elements to form a variable-power telescope, while the fixed lens enables image formation. In this configuration, the image plane location is fixed. By synchronizing the powers of the two fluidic lenses, we produce a varying magnification zoom system. The design of each lens and the coupled system is analyzed. The coupled device experimentally produced a magnification range of 0.1× to 10× zoom or a 20× zoom magnification range with no moving parts. Furthermore, we expand on optical performance and capabilities of our system with fluidic lenses relative to traditional zoom lenses.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill, 2008).
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
    [CrossRef]
  3. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]
  4. B. Burge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  5. S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  6. R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
    [CrossRef]
  7. S. Xu, Y. Liu, H. Ren, and S.-T. Wu, “A novel adaptive mechanical-wetting lens for visible and infrared imaging,” Opt. Express 18, 12430–12435 (2010).
    [CrossRef]
  8. C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
    [CrossRef]
  9. C. Dorrer, O. Prucker, and J. Ruhe, “Swellable surface-attached polymer microlenses with tunable focal length,” Adv. Mater. 19, 456–460 (2007).
    [CrossRef]
  10. S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett. 18, 2191–2193 (2006).
    [CrossRef]
  11. H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
    [CrossRef]
  12. A. Casner and J.-P. Delville, “Adaptive lensing driven by the radiation pressure of a continuous-wave laser wave upon a near-critical liquid-liquid interface,” Opt. Lett. 26, 1418–1420 (2001).
    [CrossRef]
  13. R. Kuwano, T. Tokuaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2007).
  14. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [CrossRef]
  15. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
    [CrossRef]
  16. R. Marks, D. L. Mathine, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Astigmatism and defocus wavefront correction via Zernike modes produced with liquid lenses,” Appl. Opt. 48, 3580–3587 (2009).
    [CrossRef]
  17. P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express 19, 7468–7479 (2011).
    [CrossRef]
  18. A. Miks and J. Novak, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18, 6797–6810 (2010).
    [CrossRef]
  19. A. Miks and J. Novak, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19, 23989–23996 (2011).
    [CrossRef]
  20. L. Li and Q.-H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
    [CrossRef]
  21. A. Miks, J. Novak, and P. Novak, “Generalized refractive tunable-focus lens and its imaging characteristics,” Opt. Express 18, 9034–9047 (2010).
    [CrossRef]
  22. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  23. J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Liquid zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.
  24. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
  25. W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
    [CrossRef]
  26. H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283, 3255–3258 (2010).
    [CrossRef]
  27. Sylguard 184, Dow Corning, K. R. Anderson, Phoenix Inc, Arizona (2012).
  28. R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34, 515–517 (2009).
    [CrossRef]
  29. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
    [CrossRef]
  30. N. Savidis, “Applications and systems design of elastomer based optofluidic lenses,” Ph.D. Dissertation (University of Arizona, 2012).

2012

L. Li and Q.-H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

2011

2010

A. Miks and J. Novak, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18, 6797–6810 (2010).
[CrossRef]

S. Xu, Y. Liu, H. Ren, and S.-T. Wu, “A novel adaptive mechanical-wetting lens for visible and infrared imaging,” Opt. Express 18, 12430–12435 (2010).
[CrossRef]

A. Miks, J. Novak, and P. Novak, “Generalized refractive tunable-focus lens and its imaging characteristics,” Opt. Express 18, 9034–9047 (2010).
[CrossRef]

W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
[CrossRef]

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283, 3255–3258 (2010).
[CrossRef]

2009

2007

R. Kuwano, T. Tokuaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2007).

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
[CrossRef]

C. Dorrer, O. Prucker, and J. Ruhe, “Swellable surface-attached polymer microlenses with tunable focal length,” Adv. Mater. 19, 456–460 (2007).
[CrossRef]

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
[CrossRef]

2006

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett. 18, 2191–2193 (2006).
[CrossRef]

H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

2005

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

2004

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

2003

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
[CrossRef]

2001

2000

B. Burge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Anderson, K. R.

Sylguard 184, Dow Corning, K. R. Anderson, Phoenix Inc, Arizona (2012).

Anderson, P. A.

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
[CrossRef]

Burge, B.

B. Burge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Burger, T.

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Liquid zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Casner, A.

Chen, J.

Chen, W. C.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett. 18, 2191–2193 (2006).
[CrossRef]

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
[CrossRef]

Daimon, M.

Delville, J.-P.

Dodge, M. R.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Dorrer, C.

C. Dorrer, O. Prucker, and J. Ruhe, “Swellable surface-attached polymer microlenses with tunable focal length,” Adv. Mater. 19, 456–460 (2007).
[CrossRef]

Draheim, J.

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Liquid zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Fang, W. L.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett. 18, 2191–2193 (2006).
[CrossRef]

Fox, D.

Gu, Z.-Z.

H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
[CrossRef]

Han, Y.-H.

H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Hirsa, A. H.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Kuiper, S.

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Kuwano, R.

R. Kuwano, T. Tokuaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2007).

Lee, C. C.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Lee, S. N.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett. 18, 2191–2193 (2006).
[CrossRef]

Li, L.

L. Li and Q.-H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
[CrossRef]

Liu, P.

W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
[CrossRef]

Liu, Y.

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
[CrossRef]

Lopez, C. A.

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

Marks, R.

Masumura, A.

Mathine, D. L.

Miks, A.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Nagai, K.

H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
[CrossRef]

Novak, J.

Novak, P.

Otani, Y.

R. Kuwano, T. Tokuaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2007).

Peng, R.

Peseux, J.

B. Burge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Peyghambarian, N.

Peyman, G.

Prucker, O.

C. Dorrer, O. Prucker, and J. Ruhe, “Swellable surface-attached polymer microlenses with tunable focal length,” Adv. Mater. 19, 456–460 (2007).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Ren, H.

Ruhe, J.

C. Dorrer, O. Prucker, and J. Ruhe, “Swellable surface-attached polymer microlenses with tunable focal length,” Adv. Mater. 19, 456–460 (2007).
[CrossRef]

Savidis, N.

P. Valley, N. Savidis, J. Schwiegerling, M. R. Dodge, G. Peyman, and N. Peyghambarian, “Adjustable hybrid diffractive/refractive achromatic lens,” Opt. Express 19, 7468–7479 (2011).
[CrossRef]

N. Savidis, “Applications and systems design of elastomer based optofluidic lenses,” Ph.D. Dissertation (University of Arizona, 2012).

Schneider, F.

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Liquid zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Schwiegerling, J.

Smith, W. J.

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill, 2008).

Tokuaga, T.

R. Kuwano, T. Tokuaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2007).

Tung, H. W.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett. 18, 2191–2193 (2006).
[CrossRef]

Umeda, N.

R. Kuwano, T. Tokuaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2007).

Valley, P.

Wallrabe, U.

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Liquid zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Wang, Q.-H.

L. Li and Q.-H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

Wei, X.

W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
[CrossRef]

Wu, B.

Wu, S. T.

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283, 3255–3258 (2010).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Wu, S.-T.

Xu, S.

S. Xu, Y. Liu, H. Ren, and S.-T. Wu, “A novel adaptive mechanical-wetting lens for visible and infrared imaging,” Opt. Express 18, 12430–12435 (2010).
[CrossRef]

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283, 3255–3258 (2010).
[CrossRef]

Yang, B.

W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Yang, H.

H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
[CrossRef]

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
[CrossRef]

Zhang, W.

W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
[CrossRef]

Zhao, Z.-W.

H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
[CrossRef]

Zhu, C.

Zhuang, S.

W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
[CrossRef]

R. Peng, J. Chen, C. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15, 6664–6669 (2007).
[CrossRef]

Adv. Mater.

C. Dorrer, O. Prucker, and J. Ruhe, “Swellable surface-attached polymer microlenses with tunable focal length,” Adv. Mater. 19, 456–460 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Liquid adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3173 (2003).
[CrossRef]

H. Yang, Y.-H. Han, Z.-W. Zhao, K. Nagai, and Z.-Z. Gu, “Thermal responsive microlens arrays,” Appl. Phys. Lett. 89, 111121 (2006).
[CrossRef]

C. A. Lopez, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005).
[CrossRef]

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Eur. Phys. J. E

B. Burge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, “Thermal actuated solid tunable lens,” IEEE Photon. Technol. Lett. 18, 2191–2193 (2006).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Commun.

H. Ren, S. Xu, and S. T. Wu, “Effects of gravity on the shape of liquid droplets,” Opt. Commun. 283, 3255–3258 (2010).
[CrossRef]

Opt. Eng.

L. Li and Q.-H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51, 043001 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

R. Kuwano, T. Tokuaga, Y. Otani, and N. Umeda, “Liquid pressure varifocus lens,” Opt. Rev. 12, 405–408 (2007).

Proc. SPIE

W. Zhang, P. Liu, X. Wei, S. Zhuang, and B. Yang, “The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens,” Proc. SPIE 7849, 78491W (2010).
[CrossRef]

Other

Sylguard 184, Dow Corning, K. R. Anderson, Phoenix Inc, Arizona (2012).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Liquid zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

N. Savidis, “Applications and systems design of elastomer based optofluidic lenses,” Ph.D. Dissertation (University of Arizona, 2012).

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems (McGraw-Hill, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of an afocal system with two plano–convex fluidic optical elements coupled with a fixed lens as a relay to produce a zoom lens system.

Fig. 2.
Fig. 2.

Fluidic lens 1 on the left and fluidic lens 2 on the right are our two fabricated, machined, and assembled fluidic lenses.

Fig. 3.
Fig. 3.

We observe the variation of focal length on the left and the change in power on the right as fluid is evacuated from the syringe connected to fluidic lens 1.

Fig. 4.
Fig. 4.

We observe the variation of focal length on the left and the change in power on the right as fluid is evacuated from the syringe connected to fluidic lens 2.

Fig. 5.
Fig. 5.

Above we display the physical setup of the experiment. A laser system was designed to verify the focal location of each of the fluidic lenses separately. A letter chart is placed at a distance while being imaged to our CCD camera through our zoom system.

Fig. 6.
Fig. 6.

Experimental results achieved by varying the two fluidic lenses as a zoom system. The magnification values shown are approximate magnifications that were achieved. The exact theoretical and experimental values are observed in Table 1. Chart illumination was adjusted as vignetting varied between the two fluidic lenses.

Fig. 7.
Fig. 7.

Twenty sample points were measured to produce the continuous experimental magnification compared to the anticipated theoretical magnification for the zoom system.

Tables (1)

Tables Icon

Table 1. Experimental Magnification of the 11 Images Shown in Fig. 6a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ sys = 1 f sys = φ 1 + φ 2 φ 1 φ 2 L = 1 f 1 + 1 f 2 L f 1 f 2 ,

Metrics