Abstract

The future of optical design is multispectral imaging. Advancements in detector technology have led to the challenge of imaging over both short wave infrared and long wave infrared spectrums. This paper discusses the technical hurdles associated with designing a refractor to image over both of these spectrums, such as minimizing chromatic focal shift while maximizing contrast. The design process is outlined on an eight element F/1, 23° full field of view solution. Optomechanical design forms are evaluated by analyzing possible stresses and tolerance errors. Antireflection coating designs are discussed to complete the full system. This entire design process is highlighted as a feasibility study for the future of multispectral imaging devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sparrold, E. Herman, A. Czajkowski, and K. O’Shea, “Refractive lens design for simultaneous SWIR and LWIR imaging,” Proc. SPIE 8012, 801224 (2011).
    [CrossRef]
  2. L. Miller and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).
  3. W. Smith, Modern Optical Engineering (SPIE, 2008).
  4. F. Bociort, M. van Turnhout, and O. Marinescu, “Practical guide to saddle-point construction,” Proc. SPIE 6667, 666708 (2007).
    [CrossRef]
  5. W. Smith, Modern Lens Design (McGraw-Hill, 2005).
  6. “Code V is a product of synopsys,” Pasadena, CA.
  7. T. Jamieson, “Ultrawide waveband optics” Opt. Eng. 23, 232111 (1984).
    [CrossRef]
  8. J. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2003).
  9. P. Yoder, Opto-Mechanical Systems Design (CRC, 2006).
  10. W. Jackson, Janos Technology, 55 Black Brook Road, Keene, NH 03431 (Personal Communication, 2012).
  11. J. Kumler, JENOPTIK, 16490 Innovation Drive, Jupiter, FL 33478 (Personal Communication, 2012).
  12. L. Comstock, Corning NetOptix, 69 Island Street, Keene, NH 03431 (Personal Communication, 2012).
  13. S. Sparrold, “Optics realm: asphere tolerancing,” http://www.opticsrealm.com/home/education/optics-information/asphere-tolerancing .
  14. D. Zwillinger and S. Kokoska, Standard Probability and Statistics Tables and Formulae (CRC, 2000).
  15. J. L. Miller, “Multispectral infrared bidirectional reflectance distribution function forward-scatter measurements of common infrared black surface preparations and materials,” Opt. Eng. 45, 056401 (2006).
    [CrossRef]
  16. National Optical Astronomy Observatories, “SND 0003.25—report on IR reflectance of anodized samples,” http://www.noao.edu/ets/gnirs/SDN0003-26.htm .
  17. C. Monti, “Athermal bonded mounts: incorporating aspect ratio into a closed-form solution,” Proc. SPIE 6665, 666503 (2007).
    [CrossRef]
  18. J. J. Herbert, “Techniques for deriving optimal bondlines for athermal bonded mounts,” Proc. SPIE 6288, 62880J (2006).
    [CrossRef]
  19. “Abaqus is a product of Dassault Systèmes,” Vélizy-Villacoublay, France.
  20. D. Vukobratovich, “Optomechanical design principles,” in Handbook of Optomechanical Engineering, A. Ahmad, ed. (CRC, 1996), pp. 45–68.
  21. “Excel is a product of Microsoft,” Redmond, WA.
  22. Boedekker Plastics, “PTFE specifications,” http://www.boedeker.com/ptfe_p.htm .
  23. ISP Optics Corp., “Infrared catalog materials,” http://www.ispoptics.com/PDFs/InfraredCatalog/materials.pdf .
  24. Schott North America, Inc., “Infrared chalcogenide glass IG6,” Vendor-supplied preliminary datasheet.
  25. Cerac, Inc., “Fluorine compounds for 10 μm applications,” http://www.cerac.com/pubs/proddata/thfy.htm .
  26. Umicore., “Special materials for precision optics & laser coatings,” http://thinfilmproducts.umicore.com/pdf2011/datenblatt_fluor.pdf .
  27. “Optilayer is a product of Optilayer Ltd.,” Moscow, Russia.
  28. DOW Chemical Company, “CVD zinc selenide data sheet,” http://www.dow.com/products/product/cvd-zinc-selenide/ .
  29. P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, 1991).
  30. DOW Chemical Company, “CLEARTRAN data sheet,” http://www.dow.com/products/product/cleartran/ .

2011 (1)

S. Sparrold, E. Herman, A. Czajkowski, and K. O’Shea, “Refractive lens design for simultaneous SWIR and LWIR imaging,” Proc. SPIE 8012, 801224 (2011).
[CrossRef]

2007 (2)

F. Bociort, M. van Turnhout, and O. Marinescu, “Practical guide to saddle-point construction,” Proc. SPIE 6667, 666708 (2007).
[CrossRef]

C. Monti, “Athermal bonded mounts: incorporating aspect ratio into a closed-form solution,” Proc. SPIE 6665, 666503 (2007).
[CrossRef]

2006 (2)

J. J. Herbert, “Techniques for deriving optimal bondlines for athermal bonded mounts,” Proc. SPIE 6288, 62880J (2006).
[CrossRef]

J. L. Miller, “Multispectral infrared bidirectional reflectance distribution function forward-scatter measurements of common infrared black surface preparations and materials,” Opt. Eng. 45, 056401 (2006).
[CrossRef]

1984 (1)

T. Jamieson, “Ultrawide waveband optics” Opt. Eng. 23, 232111 (1984).
[CrossRef]

Bociort, F.

F. Bociort, M. van Turnhout, and O. Marinescu, “Practical guide to saddle-point construction,” Proc. SPIE 6667, 666708 (2007).
[CrossRef]

Comstock, L.

L. Comstock, Corning NetOptix, 69 Island Street, Keene, NH 03431 (Personal Communication, 2012).

Czajkowski, A.

S. Sparrold, E. Herman, A. Czajkowski, and K. O’Shea, “Refractive lens design for simultaneous SWIR and LWIR imaging,” Proc. SPIE 8012, 801224 (2011).
[CrossRef]

Friedman, E.

L. Miller and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).

Greivenkamp, J.

J. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2003).

Herbert, J. J.

J. J. Herbert, “Techniques for deriving optimal bondlines for athermal bonded mounts,” Proc. SPIE 6288, 62880J (2006).
[CrossRef]

Herman, E.

S. Sparrold, E. Herman, A. Czajkowski, and K. O’Shea, “Refractive lens design for simultaneous SWIR and LWIR imaging,” Proc. SPIE 8012, 801224 (2011).
[CrossRef]

Jackson, W.

W. Jackson, Janos Technology, 55 Black Brook Road, Keene, NH 03431 (Personal Communication, 2012).

Jamieson, T.

T. Jamieson, “Ultrawide waveband optics” Opt. Eng. 23, 232111 (1984).
[CrossRef]

Klocek, P.

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, 1991).

Kokoska, S.

D. Zwillinger and S. Kokoska, Standard Probability and Statistics Tables and Formulae (CRC, 2000).

Kumler, J.

J. Kumler, JENOPTIK, 16490 Innovation Drive, Jupiter, FL 33478 (Personal Communication, 2012).

Marinescu, O.

F. Bociort, M. van Turnhout, and O. Marinescu, “Practical guide to saddle-point construction,” Proc. SPIE 6667, 666708 (2007).
[CrossRef]

Miller, J. L.

J. L. Miller, “Multispectral infrared bidirectional reflectance distribution function forward-scatter measurements of common infrared black surface preparations and materials,” Opt. Eng. 45, 056401 (2006).
[CrossRef]

Miller, L.

L. Miller and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).

Monti, C.

C. Monti, “Athermal bonded mounts: incorporating aspect ratio into a closed-form solution,” Proc. SPIE 6665, 666503 (2007).
[CrossRef]

O’Shea, K.

S. Sparrold, E. Herman, A. Czajkowski, and K. O’Shea, “Refractive lens design for simultaneous SWIR and LWIR imaging,” Proc. SPIE 8012, 801224 (2011).
[CrossRef]

Smith, W.

W. Smith, Modern Optical Engineering (SPIE, 2008).

W. Smith, Modern Lens Design (McGraw-Hill, 2005).

Sparrold, S.

S. Sparrold, E. Herman, A. Czajkowski, and K. O’Shea, “Refractive lens design for simultaneous SWIR and LWIR imaging,” Proc. SPIE 8012, 801224 (2011).
[CrossRef]

van Turnhout, M.

F. Bociort, M. van Turnhout, and O. Marinescu, “Practical guide to saddle-point construction,” Proc. SPIE 6667, 666708 (2007).
[CrossRef]

Vukobratovich, D.

D. Vukobratovich, “Optomechanical design principles,” in Handbook of Optomechanical Engineering, A. Ahmad, ed. (CRC, 1996), pp. 45–68.

Yoder, P.

P. Yoder, Opto-Mechanical Systems Design (CRC, 2006).

Zwillinger, D.

D. Zwillinger and S. Kokoska, Standard Probability and Statistics Tables and Formulae (CRC, 2000).

Opt. Eng. (2)

T. Jamieson, “Ultrawide waveband optics” Opt. Eng. 23, 232111 (1984).
[CrossRef]

J. L. Miller, “Multispectral infrared bidirectional reflectance distribution function forward-scatter measurements of common infrared black surface preparations and materials,” Opt. Eng. 45, 056401 (2006).
[CrossRef]

Proc. SPIE (4)

S. Sparrold, E. Herman, A. Czajkowski, and K. O’Shea, “Refractive lens design for simultaneous SWIR and LWIR imaging,” Proc. SPIE 8012, 801224 (2011).
[CrossRef]

F. Bociort, M. van Turnhout, and O. Marinescu, “Practical guide to saddle-point construction,” Proc. SPIE 6667, 666708 (2007).
[CrossRef]

C. Monti, “Athermal bonded mounts: incorporating aspect ratio into a closed-form solution,” Proc. SPIE 6665, 666503 (2007).
[CrossRef]

J. J. Herbert, “Techniques for deriving optimal bondlines for athermal bonded mounts,” Proc. SPIE 6288, 62880J (2006).
[CrossRef]

Other (24)

“Abaqus is a product of Dassault Systèmes,” Vélizy-Villacoublay, France.

D. Vukobratovich, “Optomechanical design principles,” in Handbook of Optomechanical Engineering, A. Ahmad, ed. (CRC, 1996), pp. 45–68.

“Excel is a product of Microsoft,” Redmond, WA.

Boedekker Plastics, “PTFE specifications,” http://www.boedeker.com/ptfe_p.htm .

ISP Optics Corp., “Infrared catalog materials,” http://www.ispoptics.com/PDFs/InfraredCatalog/materials.pdf .

Schott North America, Inc., “Infrared chalcogenide glass IG6,” Vendor-supplied preliminary datasheet.

Cerac, Inc., “Fluorine compounds for 10 μm applications,” http://www.cerac.com/pubs/proddata/thfy.htm .

Umicore., “Special materials for precision optics & laser coatings,” http://thinfilmproducts.umicore.com/pdf2011/datenblatt_fluor.pdf .

“Optilayer is a product of Optilayer Ltd.,” Moscow, Russia.

DOW Chemical Company, “CVD zinc selenide data sheet,” http://www.dow.com/products/product/cvd-zinc-selenide/ .

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, 1991).

DOW Chemical Company, “CLEARTRAN data sheet,” http://www.dow.com/products/product/cleartran/ .

J. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2003).

P. Yoder, Opto-Mechanical Systems Design (CRC, 2006).

W. Jackson, Janos Technology, 55 Black Brook Road, Keene, NH 03431 (Personal Communication, 2012).

J. Kumler, JENOPTIK, 16490 Innovation Drive, Jupiter, FL 33478 (Personal Communication, 2012).

L. Comstock, Corning NetOptix, 69 Island Street, Keene, NH 03431 (Personal Communication, 2012).

S. Sparrold, “Optics realm: asphere tolerancing,” http://www.opticsrealm.com/home/education/optics-information/asphere-tolerancing .

D. Zwillinger and S. Kokoska, Standard Probability and Statistics Tables and Formulae (CRC, 2000).

W. Smith, Modern Lens Design (McGraw-Hill, 2005).

“Code V is a product of synopsys,” Pasadena, CA.

L. Miller and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).

W. Smith, Modern Optical Engineering (SPIE, 2008).

National Optical Astronomy Observatories, “SND 0003.25—report on IR reflectance of anodized samples,” http://www.noao.edu/ets/gnirs/SDN0003-26.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Initial axial corrected doublet solutions’ chromatic focal shift of both SWIR (ZnSe and IG6, 5.27 × diffraction limit) and LWIR (CLEARTRAN and IG6, 0.17 × diffraction limit).

Fig. 2.
Fig. 2.

(A) Three element (IG6, ZnSe, and CLEARTRAN) F / 2 design and (B) axial chromatic aberration, SWIR ( 1.63 × diffraction limit) and LWIR ( 0.37 × diffraction limit). This lens is actually an apochromat with common focus at 1, 9, and 10.25 μm.

Fig. 3.
Fig. 3.

(A) Four element, F / 2 (ZnSe, IG6, CLEARTRAN, and ZnSe) design layout and (B) axial chromatic aberration with slight field in place, SWIR ( 1.39 × diffraction limit) and LWIR ( 0.32 × diffraction limit).

Fig. 4.
Fig. 4.

First-order construction of a Petzval lens.

Fig. 5.
Fig. 5.

(A) Initial full system at F / 2 with a 2° FFOV. (B) Axial chromatic aberration SWIR ( 0.93 × diffraction limit) and LWIR ( 0.23 × diffraction limit).

Fig. 6.
Fig. 6.

Optimization to increase F / # and Field: (A) lens layout, (B) SWIR MTF, and (C) LWIR MTF plotted, respectively. Diffraction limit is 88.07% for the SWIR and 58.80% for the LWIR at full field.

Fig. 7.
Fig. 7.

Lens layout for an eight element refractive design of a simultaneous SWIR and LWIR imager.

Fig. 8.
Fig. 8.

Axial chromatic aberrations for the final eight element design, SWIR ( 3.04 × diffraction limit) and LWIR ( 0.62 × diffraction limit).

Fig. 9.
Fig. 9.

Lateral chromatic aberrations for the final eight element design, SWIR ( 3.66 × diffraction limit) and LWIR ( 0.13 × diffraction limit).

Fig. 10.
Fig. 10.

Modulation transfer function (resolution versus field at 20 lp / mm ) for the final eight element designs in the (A) SWIR and (B) LWIR band, respectively. The SWIR tangential and sagittal MTF separation is due to lateral color and astigmatism.

Fig. 11.
Fig. 11.

Mechanical layout of drop-together assembly.

Fig. 12.
Fig. 12.

Mechanical layout of align and bond assembly.

Fig. 13.
Fig. 13.

Full system athermal layout.

Fig. 14.
Fig. 14.

BFD calculation diagram.

Fig. 15.
Fig. 15.

Transmission plot for coated and uncoated 10 mm thick IG6 substrate: (A) SWIR transmission for two faces coated and (B) LWIR transmission for two faces coated.

Tables (13)

Tables Icon

Table 1. Updated List of Optical Materials for SWIR and LWIR Design

Tables Icon

Table 2. Housing Tolerancing Values for Drop-In Assembly

Tables Icon

Table 3. Optical Manufacturing Tolerances for Precision Quality

Tables Icon

Table 4. Drop-In Assembly Tolerance Results

Tables Icon

Table 5. High Precision Assembly Tolerance Results

Tables Icon

Table 6. Sample Athermal Bond Gap Calculations

Tables Icon

Table 7. Estimated Average Radial Compressive Stress at Maximum Temperature

Tables Icon

Table 8. Uncoated Throughput for Glass Types Used in Lens Design [23,24]

Tables Icon

Table 9. Properties of Materials Used for AR Coating Designs [25,26]

Tables Icon

Table 10. Key Results of Coating Design Parameters and Transmission Increase after Coating

Tables Icon

Table 11. Absorption Coefficients of Materials Used in Design

Tables Icon

Table 12. Transmission of Coated Surfaces

Tables Icon

Table 13. Total System Transmission

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ 1 = ϕ total V 1 V 1 V 2 ,
ϕ 2 = ϕ total V 2 V 1 V 2 .
Back Focal Length Ratio = Back Focal Length Value Final Surface Diameter .
Tolerance Error = 1 Number of Monte Carlo Samples .
Δ BFD = ( L 1 * α 1 + L 2 * α 2 L 3 * α 3 L 4 * α 4 + L 5 * α 5 ) Δ T ,
ρ = n 0 n 1 n 0 + n 1 .
T bulk = e α t ,
T element = T coated surf 2 * T bulk .

Metrics