Abstract

This paper describes a custom, material-type-independent laser-triangulation-based measurement system that utilizes a high-quality ultraviolet laser beam. Laser structuring applications demand material surface alignment regarding the laser focus position, where fabrication conditions are optimal. Robust alignment of various material types was solved by introducing dynamic symmetrical pattern projection, and a “double curve fitting” centroid detection algorithm with subsurface scattering compensation. Experimental results have shown that the measurement system proves robust to laser intensity variation, with measurement bias lower than 50 μm and standard deviation lower than ±6.3μm for all materials. The developed probe has been integrated into a PCB prototyping system for material referencing purposes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “PCB Prototyping, SMT Stencils, Depaneling, LDS, MID—LPKF Laser & Electronics AG,” retrieved August, 2012, http://www.lpkf.com/ .
  2. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [CrossRef]
  3. M. Daneshpanah and K. Harding, “Surface sensitivity reduction in laser triangulation sensors,” in Proceedings of SPIE 8133, Dimensional Optical Metrology and Inspection for Practical Applications (SPIE, 2011), p. 81330O.
  4. H. Wang, “Long-range optical triangulation utilising collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
    [CrossRef]
  5. J. Liu, L. Tian, and L. Li, “Light power density distribution of image spot of laser triangulation measuring,” Opt. Lasers Eng. 29, 457–463 (1998).
    [CrossRef]
  6. F. Murakami, “Accuracy assessment of a laser triangulation sensor,” in Advanced Technologies in Instrumentation and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 10th Anniversary (IEEE, 1994), pp. 802–805.
  7. J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).
  8. R. Baribeau and M. Rioux, “Centroid fluctuations of speckled targets,” Appl. Opt. 30, 3752–3755 (1991).
    [CrossRef]
  9. R. Baribeau and M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991).
    [CrossRef]
  10. R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306–1314 (1994).
    [CrossRef]
  11. B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
    [CrossRef]
  12. B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
    [CrossRef]
  13. L. Zeng, F. Yuan, D. Song, and R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
    [CrossRef]
  14. B. Curless and M. Levoy, “Better optical triangulation through spacetime analysis,” in Proceedings of the Fifth International Conference on Computer Vision (IEEE, 1995), pp. 987–994.
  15. G. Manneberg, S. Hertegård, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation,” Opt. Eng. 40, 2041–2044 (2001).
    [CrossRef]
  16. W. W. Zhang and B. H. Zhuang, “Non-contact laser inspection for the inner wall surface of a pipe,” Meas. Sci. Tech. 9, 1380–1387 (1998).
    [CrossRef]
  17. P. Xu, S. Yao, F. Lu, X. Tang, and W. Zhang, “Mathematical model for light scanning system based on circular laser,” Chin. Opt. Lett. 3, 640–643 (2005).
  18. P. Schalk, R. Ofner, and P. O’Leary, “Pipe eccentricity measurement using laser triangulation,” Image Vis. Compu. 25, 1194–1203 (2007).
    [CrossRef]
  19. S.-J. Lee and D.-Y. Chang, “A laser sensor with multiple detectors for free form surface digitization,” Int. J. Adv. Manuf. Technol. 31, 474–482 (2006).
    [CrossRef]
  20. F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47, 7–18 (2009).
    [CrossRef]
  21. R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 2965–2968.
  22. R. Rantoson, C. Stolz, D. Fofi, and F. Meriaudeau, “Optimization of transparent objects digitization from visible fluorescence ultraviolet induced,” Opt. Eng. 51, 033601 (2012).
    [CrossRef]
  23. K. Žbontar, B. Podobnik, and F. Povše, “Verfahren und Vorrichtung zur berührungslosen Abstandsmessung (Application filed at the German Patent and Trade Mark Office),” 106,613.2 (20July2012).
  24. C. Donner, and H. W. Jensen, “Light diffusion in multi-layered translucent materials,” ACM Trans. Graph. 24, 1032–1039 (2005).
    [CrossRef]
  25. P. Hanrahan and W. Krueger, “Reflection from layered surfaces due to subsurface scattering,” in Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1993), pp. 165–174.
  26. H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graph. 21, 576–581 (2002).
    [CrossRef]

2012 (2)

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
[CrossRef]

R. Rantoson, C. Stolz, D. Fofi, and F. Meriaudeau, “Optimization of transparent objects digitization from visible fluorescence ultraviolet induced,” Opt. Eng. 51, 033601 (2012).
[CrossRef]

2011 (1)

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
[CrossRef]

2009 (1)

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47, 7–18 (2009).
[CrossRef]

2007 (1)

P. Schalk, R. Ofner, and P. O’Leary, “Pipe eccentricity measurement using laser triangulation,” Image Vis. Compu. 25, 1194–1203 (2007).
[CrossRef]

2006 (1)

S.-J. Lee and D.-Y. Chang, “A laser sensor with multiple detectors for free form surface digitization,” Int. J. Adv. Manuf. Technol. 31, 474–482 (2006).
[CrossRef]

2005 (2)

P. Xu, S. Yao, F. Lu, X. Tang, and W. Zhang, “Mathematical model for light scanning system based on circular laser,” Chin. Opt. Lett. 3, 640–643 (2005).

C. Donner, and H. W. Jensen, “Light diffusion in multi-layered translucent materials,” ACM Trans. Graph. 24, 1032–1039 (2005).
[CrossRef]

2002 (1)

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graph. 21, 576–581 (2002).
[CrossRef]

2001 (2)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

G. Manneberg, S. Hertegård, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation,” Opt. Eng. 40, 2041–2044 (2001).
[CrossRef]

1999 (1)

L. Zeng, F. Yuan, D. Song, and R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

1998 (2)

W. W. Zhang and B. H. Zhuang, “Non-contact laser inspection for the inner wall surface of a pipe,” Meas. Sci. Tech. 9, 1380–1387 (1998).
[CrossRef]

J. Liu, L. Tian, and L. Li, “Light power density distribution of image spot of laser triangulation measuring,” Opt. Lasers Eng. 29, 457–463 (1998).
[CrossRef]

1995 (1)

H. Wang, “Long-range optical triangulation utilising collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
[CrossRef]

1994 (1)

1991 (2)

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Baribeau, R.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Buhler, J.

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graph. 21, 576–581 (2002).
[CrossRef]

Chang, D.-Y.

S.-J. Lee and D.-Y. Chang, “A laser sensor with multiple detectors for free form surface digitization,” Int. J. Adv. Manuf. Technol. 31, 474–482 (2006).
[CrossRef]

Curless, B.

B. Curless and M. Levoy, “Better optical triangulation through spacetime analysis,” in Proceedings of the Fifth International Conference on Computer Vision (IEEE, 1995), pp. 987–994.

Dainty, J. C.

J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

Daneshpanah, M.

M. Daneshpanah and K. Harding, “Surface sensitivity reduction in laser triangulation sensors,” in Proceedings of SPIE 8133, Dimensional Optical Metrology and Inspection for Practical Applications (SPIE, 2011), p. 81330O.

Doiron, T.

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
[CrossRef]

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
[CrossRef]

Donner, C.

C. Donner, and H. W. Jensen, “Light diffusion in multi-layered translucent materials,” ACM Trans. Graph. 24, 1032–1039 (2005).
[CrossRef]

Dorsch, R. G.

Ennos, E.

J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

Everett, D.

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
[CrossRef]

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
[CrossRef]

Fofi, D.

R. Rantoson, C. Stolz, D. Fofi, and F. Meriaudeau, “Optimization of transparent objects digitization from visible fluorescence ultraviolet induced,” Opt. Eng. 51, 033601 (2012).
[CrossRef]

R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 2965–2968.

Françon, M.

J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

Goodman, J. W.

J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

Hanrahan, P.

P. Hanrahan and W. Krueger, “Reflection from layered surfaces due to subsurface scattering,” in Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1993), pp. 165–174.

Harding, K.

M. Daneshpanah and K. Harding, “Surface sensitivity reduction in laser triangulation sensors,” in Proceedings of SPIE 8133, Dimensional Optical Metrology and Inspection for Practical Applications (SPIE, 2011), p. 81330O.

Häusler, G.

Herrmann, J. M.

Hertegård, S.

G. Manneberg, S. Hertegård, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation,” Opt. Eng. 40, 2041–2044 (2001).
[CrossRef]

Jensen, H. W.

C. Donner, and H. W. Jensen, “Light diffusion in multi-layered translucent materials,” ACM Trans. Graph. 24, 1032–1039 (2005).
[CrossRef]

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graph. 21, 576–581 (2002).
[CrossRef]

Krueger, W.

P. Hanrahan and W. Krueger, “Reflection from layered surfaces due to subsurface scattering,” in Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1993), pp. 165–174.

Lee, S.-J.

S.-J. Lee and D.-Y. Chang, “A laser sensor with multiple detectors for free form surface digitization,” Int. J. Adv. Manuf. Technol. 31, 474–482 (2006).
[CrossRef]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Levoy, M.

B. Curless and M. Levoy, “Better optical triangulation through spacetime analysis,” in Proceedings of the Fifth International Conference on Computer Vision (IEEE, 1995), pp. 987–994.

Li, L.

J. Liu, L. Tian, and L. Li, “Light power density distribution of image spot of laser triangulation measuring,” Opt. Lasers Eng. 29, 457–463 (1998).
[CrossRef]

Liljencrantz, J.

G. Manneberg, S. Hertegård, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation,” Opt. Eng. 40, 2041–2044 (2001).
[CrossRef]

Liu, J.

J. Liu, L. Tian, and L. Li, “Light power density distribution of image spot of laser triangulation measuring,” Opt. Lasers Eng. 29, 457–463 (1998).
[CrossRef]

Liu, M.-X.

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47, 7–18 (2009).
[CrossRef]

Lu, F.

Manneberg, G.

G. Manneberg, S. Hertegård, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation,” Opt. Eng. 40, 2041–2044 (2001).
[CrossRef]

McKechnie, T. S.

J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

Meriaudeau, F.

R. Rantoson, C. Stolz, D. Fofi, and F. Meriaudeau, “Optimization of transparent objects digitization from visible fluorescence ultraviolet induced,” Opt. Eng. 51, 033601 (2012).
[CrossRef]

Mériaudeau, F.

R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 2965–2968.

Murakami, F.

F. Murakami, “Accuracy assessment of a laser triangulation sensor,” in Advanced Technologies in Instrumentation and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 10th Anniversary (IEEE, 1994), pp. 802–805.

Muralikrishnan, B.

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
[CrossRef]

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
[CrossRef]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

O’Leary, P.

P. Schalk, R. Ofner, and P. O’Leary, “Pipe eccentricity measurement using laser triangulation,” Image Vis. Compu. 25, 1194–1203 (2007).
[CrossRef]

Ofner, R.

P. Schalk, R. Ofner, and P. O’Leary, “Pipe eccentricity measurement using laser triangulation,” Image Vis. Compu. 25, 1194–1203 (2007).
[CrossRef]

Parry, G.

J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

Podobnik, B.

K. Žbontar, B. Podobnik, and F. Povše, “Verfahren und Vorrichtung zur berührungslosen Abstandsmessung (Application filed at the German Patent and Trade Mark Office),” 106,613.2 (20July2012).

Povše, F.

K. Žbontar, B. Podobnik, and F. Povše, “Verfahren und Vorrichtung zur berührungslosen Abstandsmessung (Application filed at the German Patent and Trade Mark Office),” 106,613.2 (20July2012).

Rantoson, R.

R. Rantoson, C. Stolz, D. Fofi, and F. Meriaudeau, “Optimization of transparent objects digitization from visible fluorescence ultraviolet induced,” Opt. Eng. 51, 033601 (2012).
[CrossRef]

R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 2965–2968.

Ren, W.

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
[CrossRef]

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
[CrossRef]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

R. Baribeau and M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991).
[CrossRef]

R. Baribeau and M. Rioux, “Centroid fluctuations of speckled targets,” Appl. Opt. 30, 3752–3755 (1991).
[CrossRef]

Schalk, P.

P. Schalk, R. Ofner, and P. O’Leary, “Pipe eccentricity measurement using laser triangulation,” Image Vis. Compu. 25, 1194–1203 (2007).
[CrossRef]

Shiou, F.-J.

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47, 7–18 (2009).
[CrossRef]

Song, D.

L. Zeng, F. Yuan, D. Song, and R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Stanfield, E.

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
[CrossRef]

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
[CrossRef]

Stolz, C.

R. Rantoson, C. Stolz, D. Fofi, and F. Meriaudeau, “Optimization of transparent objects digitization from visible fluorescence ultraviolet induced,” Opt. Eng. 51, 033601 (2012).
[CrossRef]

R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 2965–2968.

Tang, X.

Tian, L.

J. Liu, L. Tian, and L. Li, “Light power density distribution of image spot of laser triangulation measuring,” Opt. Lasers Eng. 29, 457–463 (1998).
[CrossRef]

Wang, H.

H. Wang, “Long-range optical triangulation utilising collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
[CrossRef]

Xu, P.

Yao, S.

Yuan, F.

L. Zeng, F. Yuan, D. Song, and R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Žbontar, K.

K. Žbontar, B. Podobnik, and F. Povše, “Verfahren und Vorrichtung zur berührungslosen Abstandsmessung (Application filed at the German Patent and Trade Mark Office),” 106,613.2 (20July2012).

Zeng, L.

L. Zeng, F. Yuan, D. Song, and R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Zhang, R.

L. Zeng, F. Yuan, D. Song, and R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Zhang, W.

Zhang, W. W.

W. W. Zhang and B. H. Zhuang, “Non-contact laser inspection for the inner wall surface of a pipe,” Meas. Sci. Tech. 9, 1380–1387 (1998).
[CrossRef]

Zhuang, B. H.

W. W. Zhang and B. H. Zhuang, “Non-contact laser inspection for the inner wall surface of a pipe,” Meas. Sci. Tech. 9, 1380–1387 (1998).
[CrossRef]

ACM Trans. Graph. (2)

H. W. Jensen and J. Buhler, “A rapid hierarchical rendering technique for translucent materials,” ACM Trans. Graph. 21, 576–581 (2002).
[CrossRef]

C. Donner, and H. W. Jensen, “Light diffusion in multi-layered translucent materials,” ACM Trans. Graph. 24, 1032–1039 (2005).
[CrossRef]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Image Vis. Compu. (1)

P. Schalk, R. Ofner, and P. O’Leary, “Pipe eccentricity measurement using laser triangulation,” Image Vis. Compu. 25, 1194–1203 (2007).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

S.-J. Lee and D.-Y. Chang, “A laser sensor with multiple detectors for free form surface digitization,” Int. J. Adv. Manuf. Technol. 31, 474–482 (2006).
[CrossRef]

Meas. Sci. Tech. (2)

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes,” Meas. Sci. Tech. 22, 1–12 (2011).
[CrossRef]

W. W. Zhang and B. H. Zhuang, “Non-contact laser inspection for the inner wall surface of a pipe,” Meas. Sci. Tech. 9, 1380–1387 (1998).
[CrossRef]

Measurement (1)

B. Muralikrishnan, W. Ren, D. Everett, E. Stanfield, and T. Doiron, “Performance evaluation experiments on a laser spot triangulation probe,” Measurement 45, 333–343 (2012).
[CrossRef]

Opt. Eng. (3)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

R. Rantoson, C. Stolz, D. Fofi, and F. Meriaudeau, “Optimization of transparent objects digitization from visible fluorescence ultraviolet induced,” Opt. Eng. 51, 033601 (2012).
[CrossRef]

G. Manneberg, S. Hertegård, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation,” Opt. Eng. 40, 2041–2044 (2001).
[CrossRef]

Opt. Lasers Eng. (4)

L. Zeng, F. Yuan, D. Song, and R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

F.-J. Shiou and M.-X. Liu, “Development of a novel scattered triangulation laser probe with six linear charge-coupled devices (CCDs),” Opt. Lasers Eng. 47, 7–18 (2009).
[CrossRef]

H. Wang, “Long-range optical triangulation utilising collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
[CrossRef]

J. Liu, L. Tian, and L. Li, “Light power density distribution of image spot of laser triangulation measuring,” Opt. Lasers Eng. 29, 457–463 (1998).
[CrossRef]

Other (8)

F. Murakami, “Accuracy assessment of a laser triangulation sensor,” in Advanced Technologies in Instrumentation and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 10th Anniversary (IEEE, 1994), pp. 802–805.

J. C. Dainty, J. W. Goodman, G. Parry, T. S. McKechnie, E. Ennos, and M. Françon, Laser Speckle and Related Phenomena (Springer-Verlag, 1984).

R. Rantoson, C. Stolz, D. Fofi, and F. Mériaudeau, “3D reconstruction of transparent objects exploiting surface fluorescence caused by UV irradiation,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 2965–2968.

B. Curless and M. Levoy, “Better optical triangulation through spacetime analysis,” in Proceedings of the Fifth International Conference on Computer Vision (IEEE, 1995), pp. 987–994.

K. Žbontar, B. Podobnik, and F. Povše, “Verfahren und Vorrichtung zur berührungslosen Abstandsmessung (Application filed at the German Patent and Trade Mark Office),” 106,613.2 (20July2012).

M. Daneshpanah and K. Harding, “Surface sensitivity reduction in laser triangulation sensors,” in Proceedings of SPIE 8133, Dimensional Optical Metrology and Inspection for Practical Applications (SPIE, 2011), p. 81330O.

“PCB Prototyping, SMT Stencils, Depaneling, LDS, MID—LPKF Laser & Electronics AG,” retrieved August, 2012, http://www.lpkf.com/ .

P. Hanrahan and W. Krueger, “Reflection from layered surfaces due to subsurface scattering,” in Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1993), pp. 165–174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Effects of material surface discontinuities and optical properties on the shape of the acquired signal. The acquired laser dot can have an irregular, discontinuous shape and uneven light intensity distribution, most often caused by surface scratches.

Fig. 2.
Fig. 2.

Laser triangulation operating principle with the use of an aligned 2D light sensor. Optical alignment results in virtual laser dot movement in one axis, thus simplifying the detection algorithm.

Fig. 3.
Fig. 3.

Dynamic symmetrical pattern projection. High scanning speed enables spatial integration of the detected signal, thus resulting in Gaussian light intensity distribution when radial cross sections are examined.

Fig. 4.
Fig. 4.

Possible irregularities of dynamic circle projection. Detected signal with good quality (a), uneven distribution of light intensity caused by optical properties of the material (b), and unconnected pattern, resulting from insufficient scanning speed (c).

Fig. 5.
Fig. 5.

Dependence of projected circle cross-section profiles on laser beam intensity. With optimal laser beam intensity, two separate Gaussian curves are visible (curve 1). Increasing the intensity value results in greater standard deviation of Gaussian curves (curves 2–4).

Fig. 6.
Fig. 6.

Rotation of an arbitrary point around an arbitrary rotation axis (a) and bilinear interpolation (b).

Fig. 7.
Fig. 7.

Study of the subsurface scattering effect in translucent materials. Boundaries for averaging radial cross-section profiles around the vertical symmetry axis, where skewness is most visible (a). The resulting negative (b) and positive (c) skewness of light intensity distribution from the upper and lower half of the pattern, respectively. An offset between the measured curve and the fitted normal curve peak positions result in measurement errors.

Fig. 8.
Fig. 8.

Study of misalignment of peak positions between an ideal skewed normal curve and a fitted normal curve. Negative skewness results in an offset of the fitted normal curve peak toward the left (a) while positive skewness results in an offset of the fitted normal curve peak toward the right (b).

Fig. 9.
Fig. 9.

Subsurface scattering compensation. In an ideal case, when studying opposite radial cross-section profiles, we obtain two equal but vertically mirrored skewed Gaussian light intensity distributions (solid curves). Summation of these profiles with regard to their peak value positions results in a Gaussian-like symmetrical curve (dash curve). The resulting curve peak and the fitted Gaussian curve (dash–dot curve) peak coincide.

Fig. 10.
Fig. 10.

Pattern symmetry property provides robustness to reflection type and material surface irregularities. Different material types: white paper, FR4, cover layer, and ceramics (left to right) result in different reflection types, which govern the acquired pattern quality. Red and blue color shades in the images represent high and low light intensities, respectively. The blue dashed curve represents the fitted ellipse and the white cross represents its centroid.

Fig. 11.
Fig. 11.

Effect of laser beam intensity variation on diffuse (white paper) material measurement. The laser beam attenuation value governs the beam intensity. 3 V and 1 V depict the lowest and the highest allowed intensities, respectively. Both detection methods provide comparable results, though the DCF method without subsurface scattering compensation shows dependence on laser beam intensity.

Fig. 12.
Fig. 12.

Effect of laser beam intensity variation on translucent material (FR4) measurement. The laser beam attenuation value governs the beam intensity. 3 V and 1 V depict the lowest and the highest allowed intensities, respectively. The DCF method with subsurface scattering compensation provides superior measurement performance with constant measurement bias and high repeatability.

Fig. 13.
Fig. 13.

Effect of different material types on measuring performance. The measurements were conducted under optimum laser beam intensity regarding each material. Measurement performance is dependent on acquired pattern quality. The DCF method with subsurface scattering compensation provides better results than the same method without the compensation technique.

Tables (4)

Tables Icon

Table 1. VC Technology Corporation Microscope Objective Specifications (SV-3518V)

Tables Icon

Table 2. Effect of Laser Beam Intensity Variation on Diffuse Material Measurement

Tables Icon

Table 3. Effect of Laser Beam Intensity Variation on Translucent Material Measurement

Tables Icon

Table 4. Performance of the DCF Method on Different Material Types

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d Z = d z sin α 1 β = d z K = d y K = y 1 y 0 K
[ x y ] = [ cos θ sin θ sin θ cos θ ] [ x y ] + [ x 0 y 0 ] ,
f ( H 1 ) x 2 x q x 2 x 1 f ( P 11 ) + x q x 1 x 2 x 1 f ( P 21 ) ,
f ( H 2 ) x 2 x q x 2 x 1 f ( P 12 ) + x q x 1 x 2 x 1 f ( P 22 ) ,
f ( Q ) y 2 y q y 2 y 1 f ( H 1 ) + y q y 1 y 2 y 1 f ( H 2 ) ,
I ( r ) = A exp ( ( r b ) 2 2 c 2 ) ,
0 = ( x x 0 ) 2 a 2 + ( y y 0 ) 2 b 2 1 ,
f ( r , σ , μ , α ) = 1 2 π σ exp ( ( r μ ) 2 2 σ 2 ) × erfc ( α ( r μ ) 2 σ ) ,
erfc ( r ) = 1 erf ( r ) = 2 π r exp ( t 2 ) d t ,

Metrics