Abstract

Diffuse optical tomography (DOT) is an emerging oncological imaging modality that is based on a near-infrared optical technique. DOT provides the spatial volume and depth of tumors by determination of optical properties of biological tissues, such as the absorption and scattering coefficients. During a DOT, the optical fibers are kept in contact with biological tissues that introduce a certain amount of pressure on the local biological tissue. Due to this pressure, the shape of the organ, for instance a breast, deforms. Moreover, this pressure could influence the intrinsic characteristics of the biological tissue. Therefore, pressure can be an important parameter in DOT. In this paper, the effects of pressure on the determination of the size and position of a tumor in biological phantoms are studied. To do so, tissue-like phantoms that are made of intralipid, Indian ink, and agar are constructed. Defects with optical properties similar to those of tumors are placed inside the phantoms. Then various values of pressure are applied to the phantoms. Subsequently, the optical properties of phantoms as well as the position and size of the tumor are reconstructed by inverse models based on the boundary integral method. The variations of reconstructed data induced by pressure are studied. The results demonstrate that pressure causes an increase in the scattering coefficient.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional time-resolved optical mammography of the uncompressed breast

Louise C. Enfield, Adam P. Gibson, Nicholas L. Everdell, David T. Delpy, Martin Schweiger, Simon R. Arridge, Caroline Richardson, Mohammad Keshtgar, Michael Douek, and Jeremy C. Hebden
Appl. Opt. 46(17) 3628-3638 (2007)

Characterization of structural-prior guided optical tomography using realistic breast models derived from dual-energy x-ray mammography

Bin Deng, Dana H. Brooks, David A. Boas, Mats Lundqvist, and Qianqian Fang
Biomed. Opt. Express 6(7) 2366-2379 (2015)

Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system

Stefan A. Carp, Amir Y. Sajjadi, Christy M. Wanyo, Qianqian Fang, Michelle C. Specht, Lidia Schapira, Beverly Moy, Aditya Bardia, David A. Boas, and Steven J. Isakoff
Biomed. Opt. Express 4(12) 2911-2924 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription