Abstract

Diffuse optical tomography (DOT) is an emerging oncological imaging modality that is based on a near-infrared optical technique. DOT provides the spatial volume and depth of tumors by determination of optical properties of biological tissues, such as the absorption and scattering coefficients. During a DOT, the optical fibers are kept in contact with biological tissues that introduce a certain amount of pressure on the local biological tissue. Due to this pressure, the shape of the organ, for instance a breast, deforms. Moreover, this pressure could influence the intrinsic characteristics of the biological tissue. Therefore, pressure can be an important parameter in DOT. In this paper, the effects of pressure on the determination of the size and position of a tumor in biological phantoms are studied. To do so, tissue-like phantoms that are made of intralipid, Indian ink, and agar are constructed. Defects with optical properties similar to those of tumors are placed inside the phantoms. Then various values of pressure are applied to the phantoms. Subsequently, the optical properties of phantoms as well as the position and size of the tumor are reconstructed by inverse models based on the boundary integral method. The variations of reconstructed data induced by pressure are studied. The results demonstrate that pressure causes an increase in the scattering coefficient.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. H. Neimz, Laser-Tissue Interaction: Fundamentals and Applications (Springer-Verlag, 2003).
  2. V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).
  3. N. Gosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt 40, 176–184 (2001).
    [CrossRef]
  4. E. Salomatina, “Optical properties of normal and cancerous human skin in the visible and near infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
    [CrossRef]
  5. L. V. Wang and H. I. Wu, Biomedical Optics: Principle and Imaging (Wiley, 2007).
  6. N. Iftimia, W. R. Brugge, and D. X. Hammer, Advances in Optical Imaging for Clinical Medicine (Wiley, 2011).
  7. H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
    [CrossRef]
  8. Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16, 4250–4262(2008).
    [CrossRef]
  9. G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).
  10. H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
    [CrossRef]
  11. S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214 (2003).
    [CrossRef]
  12. P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
    [CrossRef]
  13. Z. Wang, “Mechanical and optical methods for breast cancer imaging,” Ph.D. dissertation (Iowa University, 2010).
  14. M. A. Ansari, S. Alikhani, E. Mohajerani, and R. Massudi, “The numerical and experimental study of photon diffusion inside biological tissue using boundary integral method,” Opt. Commun. 285, 851–855 (2012).
    [CrossRef]
  15. M. A. Ansari, and R. Massudi, “Study of short pulse laser propagation in biological tissue by means of boundary element method,” Lasers Med. Sci. 26, 503–508 (2011).
    [CrossRef]
  16. M. A. Ansari, R. Massudi, and M. Hejazi, “Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom,” Opt. Laser Technol. 41, 746–750 (2009).
    [CrossRef]
  17. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delphy, “The finite element method for propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995).
    [CrossRef]
  18. M. A. Ansari and R. Massudi, “The boundary integral method for simulating laser short pulse penetration into biological tissues,” J. Biomed. Opt. 15, 065009 (2010).
    [CrossRef]
  19. S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
    [CrossRef]
  20. S. Srinivasan, H. R. Ghadyani, B. W. Pogue, and K. D. Paulsen, “A coupled finite element-boundary element method for modeling diffusion equation in 3D multi-modality optical imaging,” Biomed. Opt. Express 1, 398–413 (2010).
    [CrossRef]
  21. C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
    [CrossRef]
  22. H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC, 2011).
  23. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  24. R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” Ph.D. thesis (Department of Physics and Astronomy, University of Pennsylvania, 2005).
  25. V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef]
  26. B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
    [CrossRef]
  27. M. Erfanzadeh, S. Alikhani, M. A. Ansari, and E. Mohajerani, “A low-cost method for optical tomography,” J. Lasers Med. Sci. 3, 102–108 (2012).
  28. C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
    [CrossRef]
  29. A. J. Welch and M. V. C. Gemert, Optical-Response of Laser-Irradiated Tissue (Springer, 1995).
  30. F. S. Azar, D. N. Metaxas, and M. D. Schnall, “A deformable finite element model of the breast for predicting mechanical deformations under external perturbations,” Acad. Radiol. 8, 965–975 (2001).
    [CrossRef]
  31. K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
    [CrossRef]
  32. J. H. Chung, V. Rajagopal, P. M. F. Nielsen, and M. P. Nash, “Modeling mammographic compression of the breast,” Lect. Notes Comput. Sci. 5242, 758–765 (2008).
    [CrossRef]

2012

M. A. Ansari, S. Alikhani, E. Mohajerani, and R. Massudi, “The numerical and experimental study of photon diffusion inside biological tissue using boundary integral method,” Opt. Commun. 285, 851–855 (2012).
[CrossRef]

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

M. Erfanzadeh, S. Alikhani, M. A. Ansari, and E. Mohajerani, “A low-cost method for optical tomography,” J. Lasers Med. Sci. 3, 102–108 (2012).

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

2011

M. A. Ansari, and R. Massudi, “Study of short pulse laser propagation in biological tissue by means of boundary element method,” Lasers Med. Sci. 26, 503–508 (2011).
[CrossRef]

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

2010

S. Srinivasan, H. R. Ghadyani, B. W. Pogue, and K. D. Paulsen, “A coupled finite element-boundary element method for modeling diffusion equation in 3D multi-modality optical imaging,” Biomed. Opt. Express 1, 398–413 (2010).
[CrossRef]

M. A. Ansari and R. Massudi, “The boundary integral method for simulating laser short pulse penetration into biological tissues,” J. Biomed. Opt. 15, 065009 (2010).
[CrossRef]

2009

M. A. Ansari, R. Massudi, and M. Hejazi, “Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom,” Opt. Laser Technol. 41, 746–750 (2009).
[CrossRef]

2008

P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
[CrossRef]

J. H. Chung, V. Rajagopal, P. M. F. Nielsen, and M. P. Nash, “Modeling mammographic compression of the breast,” Lect. Notes Comput. Sci. 5242, 758–765 (2008).
[CrossRef]

Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16, 4250–4262(2008).
[CrossRef]

2007

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
[CrossRef]

2006

E. Salomatina, “Optical properties of normal and cancerous human skin in the visible and near infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

2004

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef]

2003

2001

N. Gosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt 40, 176–184 (2001).
[CrossRef]

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “A deformable finite element model of the breast for predicting mechanical deformations under external perturbations,” Acad. Radiol. 8, 965–975 (2001).
[CrossRef]

1999

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

1998

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
[CrossRef]

1997

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

1996

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

1995

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delphy, “The finite element method for propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995).
[CrossRef]

1990

V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef]

Alikhani, S.

M. Erfanzadeh, S. Alikhani, M. A. Ansari, and E. Mohajerani, “A low-cost method for optical tomography,” J. Lasers Med. Sci. 3, 102–108 (2012).

M. A. Ansari, S. Alikhani, E. Mohajerani, and R. Massudi, “The numerical and experimental study of photon diffusion inside biological tissue using boundary integral method,” Opt. Commun. 285, 851–855 (2012).
[CrossRef]

Anderson, E. R.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Ansari, M. A.

M. A. Ansari, S. Alikhani, E. Mohajerani, and R. Massudi, “The numerical and experimental study of photon diffusion inside biological tissue using boundary integral method,” Opt. Commun. 285, 851–855 (2012).
[CrossRef]

M. Erfanzadeh, S. Alikhani, M. A. Ansari, and E. Mohajerani, “A low-cost method for optical tomography,” J. Lasers Med. Sci. 3, 102–108 (2012).

M. A. Ansari, and R. Massudi, “Study of short pulse laser propagation in biological tissue by means of boundary element method,” Lasers Med. Sci. 26, 503–508 (2011).
[CrossRef]

M. A. Ansari and R. Massudi, “The boundary integral method for simulating laser short pulse penetration into biological tissues,” J. Biomed. Opt. 15, 065009 (2010).
[CrossRef]

M. A. Ansari, R. Massudi, and M. Hejazi, “Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom,” Opt. Laser Technol. 41, 746–750 (2009).
[CrossRef]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delphy, “The finite element method for propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995).
[CrossRef]

Azar, F. S.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “A deformable finite element model of the breast for predicting mechanical deformations under external perturbations,” Acad. Radiol. 8, 965–975 (2001).
[CrossRef]

Bherer, L.

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

Bonnery, C.

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

Brady, J. M.

P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
[CrossRef]

Brugge, W. R.

N. Iftimia, W. R. Brugge, and D. X. Hammer, Advances in Optical Imaging for Clinical Medicine (Wiley, 2011).

Butler, J.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Carpenter, C.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
[CrossRef]

Casperson, L. W.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
[CrossRef]

Chan, K. E.

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

Chapman, S. J.

P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
[CrossRef]

Chen, G. Z.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Choe, R.

R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” Ph.D. thesis (Department of Physics and Astronomy, University of Pennsylvania, 2005).

Chung, J. H.

J. H. Chung, V. Rajagopal, P. M. F. Nielsen, and M. P. Nash, “Modeling mammographic compression of the breast,” Lect. Notes Comput. Sci. 5242, 758–765 (2008).
[CrossRef]

Dehghani, H.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef]

Delphy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delphy, “The finite element method for propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995).
[CrossRef]

Desjardins, M.

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

Doyley, M. M.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef]

Erfanzadeh, M.

M. Erfanzadeh, S. Alikhani, M. A. Ansari, and E. Mohajerani, “A low-cost method for optical tomography,” J. Lasers Med. Sci. 3, 102–108 (2012).

Fishkin, J. B.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Frank, G. L.

V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef]

Gavaghan, D. J.

P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
[CrossRef]

Gemert, M. V. C.

A. J. Welch and M. V. C. Gemert, Optical-Response of Laser-Irradiated Tissue (Springer, 1995).

Geng, J.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef]

Ghadyani, H. R.

Gosh, N.

N. Gosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt 40, 176–184 (2001).
[CrossRef]

Gregory, K. W.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
[CrossRef]

Gross, J. D.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Guan, G.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

Guo, Z. Y.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Gupta, P. K.

N. Gosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt 40, 176–184 (2001).
[CrossRef]

Hammer, D. X.

N. Iftimia, W. R. Brugge, and D. X. Hammer, Advances in Optical Imaging for Clinical Medicine (Wiley, 2011).

Hejazi, M.

M. A. Ansari, R. Massudi, and M. Hejazi, “Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom,” Opt. Laser Technol. 41, 746–750 (2009).
[CrossRef]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delphy, “The finite element method for propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995).
[CrossRef]

Hoge, R.

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

Huang, Z.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

Iftimia, N.

N. Iftimia, W. R. Brugge, and D. X. Hammer, Advances in Optical Imaging for Clinical Medicine (Wiley, 2011).

Jacques, S. L.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
[CrossRef]

Jiang, H.

H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC, 2011).

Jiang, S.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef]

Jiang, S. D.

Leclerc, P. O.

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

Lesage, F.

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

Li, C.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

Li, L. J.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Li, S.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

Lin, Q. Y.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Lin, W. C.

Liu, S. H.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Majumder, S. K.

N. Gosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt 40, 176–184 (2001).
[CrossRef]

Massudi, R.

M. A. Ansari, S. Alikhani, E. Mohajerani, and R. Massudi, “The numerical and experimental study of photon diffusion inside biological tissue using boundary integral method,” Opt. Commun. 285, 851–855 (2012).
[CrossRef]

M. A. Ansari, and R. Massudi, “Study of short pulse laser propagation in biological tissue by means of boundary element method,” Lasers Med. Sci. 26, 503–508 (2011).
[CrossRef]

M. A. Ansari and R. Massudi, “The boundary integral method for simulating laser short pulse penetration into biological tissues,” J. Biomed. Opt. 15, 065009 (2010).
[CrossRef]

M. A. Ansari, R. Massudi, and M. Hejazi, “Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom,” Opt. Laser Technol. 41, 746–750 (2009).
[CrossRef]

Metaxas, D. N.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “A deformable finite element model of the breast for predicting mechanical deformations under external perturbations,” Acad. Radiol. 8, 965–975 (2001).
[CrossRef]

Mohajerani, E.

M. A. Ansari, S. Alikhani, E. Mohajerani, and R. Massudi, “The numerical and experimental study of photon diffusion inside biological tissue using boundary integral method,” Opt. Commun. 285, 851–855 (2012).
[CrossRef]

M. Erfanzadeh, S. Alikhani, M. A. Ansari, and E. Mohajerani, “A low-cost method for optical tomography,” J. Lasers Med. Sci. 3, 102–108 (2012).

Mohanty, S. K.

N. Gosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt 40, 176–184 (2001).
[CrossRef]

Motamedi, M.

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

Nash, M. P.

J. H. Chung, V. Rajagopal, P. M. F. Nielsen, and M. P. Nash, “Modeling mammographic compression of the breast,” Lect. Notes Comput. Sci. 5242, 758–765 (2008).
[CrossRef]

Neimz, N. H.

N. H. Neimz, Laser-Tissue Interaction: Fundamentals and Applications (Springer-Verlag, 2003).

Nielsen, P. M. F.

J. H. Chung, V. Rajagopal, P. M. F. Nielsen, and M. P. Nash, “Modeling mammographic compression of the breast,” Lect. Notes Comput. Sci. 5242, 758–765 (2008).
[CrossRef]

O’Neil, M.

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

Pathmanathan, P.

P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
[CrossRef]

Patterson, M. S.

V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef]

Paulsen, K.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
[CrossRef]

Paulsen, K. D.

Peters, V. G.

V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef]

Pham, D.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Pogue, B. W.

S. Srinivasan, H. R. Ghadyani, B. W. Pogue, and K. D. Paulsen, “A coupled finite element-boundary element method for modeling diffusion equation in 3D multi-modality optical imaging,” Biomed. Opt. Express 1, 398–413 (2010).
[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
[CrossRef]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef]

S. D. Jiang, B. W. Pogue, and K. D. Paulsen, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214 (2003).
[CrossRef]

Pouliot, P.

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

Prahl, S. A.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
[CrossRef]

Protsenko, D.

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

Rajagopal, V.

J. H. Chung, V. Rajagopal, P. M. F. Nielsen, and M. P. Nash, “Modeling mammographic compression of the breast,” Lect. Notes Comput. Sci. 5242, 758–765 (2008).
[CrossRef]

Salomatina, E.

E. Salomatina, “Optical properties of normal and cancerous human skin in the visible and near infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

Schnall, M. D.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “A deformable finite element model of the breast for predicting mechanical deformations under external perturbations,” Acad. Radiol. 8, 965–975 (2001).
[CrossRef]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delphy, “The finite element method for propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995).
[CrossRef]

Shangguan, H.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
[CrossRef]

Sorg, B.

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

Srinivasan, S.

S. Srinivasan, H. R. Ghadyani, B. W. Pogue, and K. D. Paulsen, “A coupled finite element-boundary element method for modeling diffusion equation in 3D multi-modality optical imaging,” Biomed. Opt. Express 1, 398–413 (2010).
[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
[CrossRef]

Ti, Y.

Tromberg, B. J.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Tuchin, V.

V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

Uoz, O. C.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Wang, L. V.

L. V. Wang and H. I. Wu, Biomedical Optics: Principle and Imaging (Wiley, 2007).

Wang, R. K.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

Wang, Y. H.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Wang, Z.

Z. Wang, “Mechanical and optical methods for breast cancer imaging,” Ph.D. dissertation (Iowa University, 2010).

Wei, C.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

Welch, A. J.

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

A. J. Welch and M. V. C. Gemert, Optical-Response of Laser-Irradiated Tissue (Springer, 1995).

Whiteley, J. P.

P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
[CrossRef]

Wu, H. I.

L. V. Wang and H. I. Wu, Biomedical Optics: Principle and Imaging (Wiley, 2007).

Wymant, D. R.

V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef]

Xu, Y. X.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Yalavarthy, P. K.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
[CrossRef]

Yang, H. Q.

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Acad. Radiol.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “A deformable finite element model of the breast for predicting mechanical deformations under external perturbations,” Acad. Radiol. 8, 965–975 (2001).
[CrossRef]

Appl. Opt

N. Gosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt 40, 176–184 (2001).
[CrossRef]

Biomed. Opt. Express

IEEE J. Sel. Top. Quantum Electron.

K. E. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996).
[CrossRef]

IEEE Trans. Biomed. Eng.

P. Pathmanathan, D. J. Gavaghan, J. P. Whiteley, S. J. Chapman, and J. M. Brady, “Predicting tumor location by modeling the deformation of breast,” IEEE Trans. Biomed. Eng. 55, 2471–2480 (2008).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt

C. Bonnery, P. O. Leclerc, M. Desjardins, R. Hoge, L. Bherer, P. Pouliot, and F. Lesage, “Changes in diffusion path length with old age in diffuse optical tomography,” J. Biomed. Opt 17, 056002 (2012).
[CrossRef]

J. Biomed. Opt.

M. A. Ansari and R. Massudi, “The boundary integral method for simulating laser short pulse penetration into biological tissues,” J. Biomed. Opt. 15, 065009 (2010).
[CrossRef]

E. Salomatina, “Optical properties of normal and cancerous human skin in the visible and near infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

J. Lasers Med. Sci.

M. Erfanzadeh, S. Alikhani, M. A. Ansari, and E. Mohajerani, “A low-cost method for optical tomography,” J. Lasers Med. Sci. 3, 102–108 (2012).

G. Z. Chen, Y. X. Xu, Y. H. Wang, H. Q. Yang, Q. Y. Lin, L. J. Li, Z. Y. Guo, and S. H. Liu, “Optical transport properties along the pericardium meridian under different pressure,” J. Lasers Med. Sci. 2, 89–97 (2011).

Lasers Med. Sci.

M. A. Ansari, and R. Massudi, “Study of short pulse laser propagation in biological tissue by means of boundary element method,” Lasers Med. Sci. 26, 503–508 (2011).
[CrossRef]

Lect. Notes Comput. Sci.

J. H. Chung, V. Rajagopal, P. M. F. Nielsen, and M. P. Nash, “Modeling mammographic compression of the breast,” Lect. Notes Comput. Sci. 5242, 758–765 (2008).
[CrossRef]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delphy, “The finite element method for propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1791 (1995).
[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).
[CrossRef]

Opt. Commun.

M. A. Ansari, S. Alikhani, E. Mohajerani, and R. Massudi, “The numerical and experimental study of photon diffusion inside biological tissue using boundary integral method,” Opt. Commun. 285, 851–855 (2012).
[CrossRef]

Opt. Express

Opt. Laser Technol.

C. Li, S. Li, G. Guan, C. Wei, Z. Huang, and R. K. Wang, “A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms,” Opt. Laser Technol. 44, 866–871 (2012).
[CrossRef]

M. A. Ansari, R. Massudi, and M. Hejazi, “Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom,” Opt. Laser Technol. 41, 746–750 (2009).
[CrossRef]

Opt. Lett.

Phil. Trans. R. Soc. B

B. J. Tromberg, O. C. Uoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. B 352, 661–668 (1997).
[CrossRef]

Phys. Med. Biol.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef]

V. G. Peters, D. R. Wymant, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef]

Proc. SPIE

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371 (1998).
[CrossRef]

Other

H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC, 2011).

L. V. Wang and H. I. Wu, Biomedical Optics: Principle and Imaging (Wiley, 2007).

N. Iftimia, W. R. Brugge, and D. X. Hammer, Advances in Optical Imaging for Clinical Medicine (Wiley, 2011).

Z. Wang, “Mechanical and optical methods for breast cancer imaging,” Ph.D. dissertation (Iowa University, 2010).

N. H. Neimz, Laser-Tissue Interaction: Fundamentals and Applications (Springer-Verlag, 2003).

V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” Ph.D. thesis (Department of Physics and Astronomy, University of Pennsylvania, 2005).

A. J. Welch and M. V. C. Gemert, Optical-Response of Laser-Irradiated Tissue (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Two kinds of defect positions in phantoms. Defects have more scattering and absorber material. Left: vertical position of defect (case a). Right: horizontal position of defect (case b).

Fig. 2.
Fig. 2.

Schematic of the setup. Light from laser diode (1) passes a polarizer (2), which is used for changing the power of light. Then it is divided into two parts by a beam splitter (3). One part is used as a reference light after passing a filter (4). The reference light is detected by a detector (5). The other part enters an optical fiber (6) and enters the phantom (7). Then it is sent to the main detector (8) by another optical fiber of the same kind. In order to avoid losing data, a voltage reducer (9) is used before the data is sent to the PC (12). The detecting optical fiber is orbited around the phantom by a step motor (11), which is controlled by the step motor driver (10). The electrical power of the whole system is supplied by a power supply (13).

Fig. 3.
Fig. 3.

Application of pressure by putting sinkers on top of the phantom.

Fig. 4.
Fig. 4.

Intensity of light transmitted through phantom inside a glass receptacle.

Fig. 5.
Fig. 5.

Intensity of light transmitted through phantom inside and outside a glass receptacle.

Fig. 6.
Fig. 6.

Intensity of light transmitted through homogenous phantoms for different pressures. As the pressure is increased, the intensity of light for a typical angle (especially between 40 and 100 deg) is decreased, which indicates that a composition of absorption and scattering coefficients is increased.

Fig. 7.
Fig. 7.

Intensity of light transmitted through inhomogenous (case b) phantoms for different pressures. As the pressure is increased, the intensity of light for a typical angle (especially between 40 and 100 deg) is changed, which indicates that a composition of absorption and scattering coefficients is varied.

Fig. 8.
Fig. 8.

Pure effect of pressure on intensity curves in case (a). These variations can be interpreted as defects with different size and position when the inverse problem is solved.

Fig. 9.
Fig. 9.

Angular evolution of diffused photons for heterogeneous phantom with defect at 90 deg for two different situations: prone-to-supine for fatty tissue (a) and fibroglandular (b). The radius of the tumor is 5 mm. The absorption and reduced scattering coefficient of the defect are 0.4 and 4.8cm1, respectively. The magnitude of displacement of the tumor for fatty tissue is considered as 6 mm, but for fibroglandular tissue it is 1.02 mm [31].

Fig. 10.
Fig. 10.

Diffused photons for heterogeneous phantom with defect at 90 deg for two different situations: prone and supine for fatty tissue. One can see two graphs related to different magnitudes of the displacement vector, namely +5.

Tables (3)

Tables Icon

Table 1. Compositions of Phantoms for Lambda of 780 nma

Tables Icon

Table 2. Reconstructed Values of Absorption and Scatteringa

Tables Icon

Table 3. Reconstructed Value of Absorption and Reduced Scattering Coefficients of Defect in the Inhomogeneous Phantom for Different Pressure Situationsa

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

·D(r⃗)φ(r⃗,ω)+(a(r⃗)+iωc)φ(r⃗,ω)=S(r⃗,ω).
D(r⃗)=13(a(r⃗)+σ(r⃗)),
a(r⃗)+iωc=κl2l=1,2,
·Dlφ(r⃗,ω)+κl2φ(r⃗,ω)=S(r⃗,ω).
φ(r⃗)2ADln⃗l·φ(r⃗)=0,
A2=j=1m(φjmeasuredφjcal)2,
A2α1j=1m(φjmeasuredφjcal)φjcalα1=0,A2α2j=1m(φjmeasuredφjcal)φjcalα2=0A2α2nj=1m(φjmeasuredφjcal)φjcalα2n=0,
B=(b1,b2,,b2n)T,
bi=j=1m(φjmeasuredφjcal)φjcalαi=(φ1calαi,φ2calαi,,φmcalαi)·(φ1measuredφ1cal,φ2measuredφ2cal,,φmmeasuredφmcal)T.
αn=αn1G1B,
G=[b1α1b1α2b1α2nb2α1b2α2b2α2nb2nα1b2nα2b2nα2n].
GΔα=B.
B=JTC,
C=(φ1measuredφ1cal,φ2measuredφ2cal,,φmmeasuredφmcal)T,
J=[φ1α1φ1α2φ1α2nφ2α1φ2α2φ2α2nφ2nα1φ2nα2φ2nα2n].
G=JTJ.
α=[JTJ+ηI]1JTC.
I(z)=I0exp(az).
σ=2.54×109×λ2.4,g=1.10.58×103×λ,
σbefore×Vbefore+σintralipid×Vintralipid=σafter×Vafter,abefore×Vbefore+aintralipid×Vintralipid=aafter×Vafter.

Metrics