Abstract

Digital holographic microscopy (DHM) has been used to determine the morphology and shape of transparent objects. However, the obtained shape is often inaccurate depending on the object properties and the setup of the optical imaging system. To understand these effects, we developed a new DHM model on the basis of a hybrid pupil imaging and finite-difference time-domain method. To demonstrate this model, we compared the results of an experiment with those of a simulation using borosilicate glass microspheres and a mold with a linear step structure. The simulation and experimental results showed good agreement. We also showed how the curvature and refractive index of objects affect the accuracy of thickness measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  2. I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. Royal Soc. Interface 4, 305–313 (2007).
    [CrossRef]
  3. P. Marquet, B. Rappaz, and P. J. Magistretti, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [CrossRef]
  4. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
    [CrossRef]
  5. P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
    [CrossRef]
  6. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
    [CrossRef]
  7. J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012).
    [CrossRef]
  8. G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
    [CrossRef]
  9. Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
    [CrossRef]
  10. P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
    [CrossRef]
  11. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).
  12. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [CrossRef]
  13. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [CrossRef]
  14. B. Salski and W. Gwarek, “Hybrid finite-difference time-domain Fresnel modeling of microscopy imaging,” Appl. Opt. 48, 2133–2138 (2009).
    [CrossRef]
  15. B. Salski and W. Gwarek, “Hybrid FDTD-Fresnel modeling of the scanning confocal microscopy,” Proc. SPIE 7378, 737826 (2009).
    [CrossRef]
  16. I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “The microscope in an computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s Equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Vol. 57, Chap. 1.
  17. J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, “Computational microscopy in embryo imaging,” Opt. Lett. 29, 2267–2269 (2004).
    [CrossRef]
  18. S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008).
    [CrossRef]
  19. O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
    [CrossRef]
  20. S. V. Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A 26, 1221–1234 (2009).
  21. I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Lett. 36, 1596–1598 (2011).
    [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000), pp. 175–224.
  23. A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002).
    [CrossRef]
  24. S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011).
    [CrossRef]
  25. A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
    [CrossRef]
  26. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
    [CrossRef]
  27. C. A. Balanis, Modern Antenna Handbook (Wiley, 2008), pp. 1499–1502.
  28. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]

2012 (1)

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012).
[CrossRef]

2011 (2)

2009 (4)

B. Salski and W. Gwarek, “Hybrid finite-difference time-domain Fresnel modeling of microscopy imaging,” Appl. Opt. 48, 2133–2138 (2009).
[CrossRef]

S. V. Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A 26, 1221–1234 (2009).

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

B. Salski and W. Gwarek, “Hybrid FDTD-Fresnel modeling of the scanning confocal microscopy,” Proc. SPIE 7378, 737826 (2009).
[CrossRef]

2008 (4)

S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008).
[CrossRef]

O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
[CrossRef]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[CrossRef]

2007 (2)

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. Royal Soc. Interface 4, 305–313 (2007).
[CrossRef]

2006 (3)

2005 (3)

2004 (2)

J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, “Computational microscopy in embryo imaging,” Opt. Lett. 29, 2267–2269 (2004).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

2002 (1)

2000 (2)

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

1999 (1)

Aspert, N.

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Backman, V.

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Lett. 36, 1596–1598 (2011).
[CrossRef]

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “The microscope in an computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s Equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Vol. 57, Chap. 1.

Balanis, C. A.

C. A. Balanis, Modern Antenna Handbook (Wiley, 2008), pp. 1499–1502.

Bally, G. V.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[CrossRef]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

Bernhardt, I.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Botkine, M.

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Bourquin, S.

Braat, J. J. M.

S. V. Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A 26, 1221–1234 (2009).

O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
[CrossRef]

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Capoglu, I. R.

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Lett. 36, 1596–1598 (2011).
[CrossRef]

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “The microscope in an computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s Equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Vol. 57, Chap. 1.

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Charriere, F.

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Chuche, E.

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Colomb, T.

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Coppola, G.

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

Cuche, E.

Dasari, R. R.

De Nicola, S.

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

Depeursinge, C.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

DiMarzio, C. A.

Dimiduk, T. G.

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012).
[CrossRef]

Dirksen, D.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Dunn, A. K.

Emery, Y.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Feld, M. S.

Ferraro, P.

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

Finizio, A.

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

Fung, J.

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012).
[CrossRef]

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Georgiev, G.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Grilli, S.

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

Gwarek, W.

B. Salski and W. Gwarek, “Hybrid finite-difference time-domain Fresnel modeling of microscopy imaging,” Appl. Opt. 48, 2133–2138 (2009).
[CrossRef]

B. Salski and W. Gwarek, “Hybrid FDTD-Fresnel modeling of the scanning confocal microscopy,” Proc. SPIE 7378, 737826 (2009).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000), pp. 175–224.

Haver, S. V.

S. V. Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A 26, 1221–1234 (2009).

O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
[CrossRef]

Hollmann, J. L.

Ikeda, T.

Iodica, M.

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

Janssen, A. J. E. M.

Janssen, O. T. A.

S. V. Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A 26, 1221–1234 (2009).

O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
[CrossRef]

Javidi, B.

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. Royal Soc. Interface 4, 305–313 (2007).
[CrossRef]

Kemper, B.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[CrossRef]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Ketelhut, S.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Koike, C.

Koike, T.

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

Kuhn, J.

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Kühn, J.

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Langehanenberg, P.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[CrossRef]

Lyubomira, I.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

Magistretti, P. J.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

P. Marquet, B. Rappaz, and P. J. Magistretti, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Manoharan, V. N.

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012).
[CrossRef]

Marian, A.

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Marquet, F.

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Marquet, P.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

P. Marquet, B. Rappaz, and P. J. Magistretti, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

Montfort, F.

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical pametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006).

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

Moon, I.

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. Royal Soc. Interface 4, 305–313 (2007).
[CrossRef]

Odate, S.

Otaki, K.

Paddon, P.

S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008).
[CrossRef]

Pereira, S. F.

S. V. Haver, J. J. M. Braat, A. J. E. M. Janssen, O. T. A. Janssen, and S. F. Pereira, “Vectorial aerial-image computations of three-dimensional objects based on the extended Nijboer-Zernike theory,” J. Opt. Soc. Am. A 26, 1221–1234 (2009).

O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
[CrossRef]

Perry, R. W.

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012).
[CrossRef]

Pond, J.

S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008).
[CrossRef]

Popescu, G.

Rappaz, B.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

P. Marquet, B. Rappaz, and P. J. Magistretti, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[CrossRef]

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Rogers, J. D.

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Lett. 36, 1596–1598 (2011).
[CrossRef]

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “The microscope in an computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s Equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Vol. 57, Chap. 1.

Salski, B.

B. Salski and W. Gwarek, “Hybrid finite-difference time-domain Fresnel modeling of microscopy imaging,” Appl. Opt. 48, 2133–2138 (2009).
[CrossRef]

B. Salski and W. Gwarek, “Hybrid FDTD-Fresnel modeling of the scanning confocal microscopy,” Proc. SPIE 7378, 737826 (2009).
[CrossRef]

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

Subramanian, H.

Sugaya, A.

Sugisaki, K.

Taflove, A.

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Lett. 36, 1596–1598 (2011).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000), pp. 175–224.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “The microscope in an computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s Equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Vol. 57, Chap. 1.

Tanev, S.

S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008).
[CrossRef]

Toba, H.

Tuchin, V. V.

S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008).
[CrossRef]

Uchikawa, K.

Urbach, H. P.

O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
[CrossRef]

Vollmer, A.

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

White, C. A.

Adv. Opt. Technol. (1)

S. Tanev, J. Pond, P. Paddon, and V. V. Tuchin, “A new 3D simulation method for the construction of optical phase contrast images of gold nanoparticle clusters in biological cells,” Adv. Opt. Technol. 2008, 727418 (2008).
[CrossRef]

Appl. Opt. (4)

Cytometry A (1)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73, 895–903 (2008).
[CrossRef]

J. Biomed. Opt. (2)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. V. Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
[CrossRef]

P. Langehanenberg, I. Lyubomira, I. Bernhardt, S. Ketelhut, A. Vollmer, G. Georgiev, G. V. Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[CrossRef]

J. Microscopy (1)

A. Marian, F. Charriere, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microscopy 225, 156–169 (2007).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Quant. Spectrosc. Rad. Trans. (1)

J. Fung, R. W. Perry, T. G. Dimiduk, and V. N. Manoharan, “Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms,” J. Quant. Spectrosc. Rad. Trans. 113, 2482–2489 (2012).
[CrossRef]

J. Royal Soc. Interface (1)

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. Royal Soc. Interface 4, 305–313 (2007).
[CrossRef]

Meas. Sci. Techn. (1)

G. Coppola, P. Ferraro, M. Iodica, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Techn. 15, 529–539 (2004).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (3)

Y. Emery, E. Chuche, F. Marquet, N. Aspert, P. Marquet, J. Kuhn, M. Botkine, T. Colomb, F. Montfort, F. Charriere, and C. Depeursinge, “Digital holography microscopy (DHM): fast and robust systems for industrial inspection with interferometer resolution,” Proc. SPIE 5856, 930 (2005).
[CrossRef]

B. Salski and W. Gwarek, “Hybrid FDTD-Fresnel modeling of the scanning confocal microscopy,” Proc. SPIE 7378, 737826 (2009).
[CrossRef]

O. T. A. Janssen, S. V. Haver, A. J. E. M. Janssen, J. J. M. Braat, H. P. Urbach, and S. F. Pereira, “Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm,” Proc. SPIE 6924, 692410 (2008).
[CrossRef]

Other (3)

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “The microscope in an computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s Equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), Vol. 57, Chap. 1.

C. A. Balanis, Modern Antenna Handbook (Wiley, 2008), pp. 1499–1502.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000), pp. 175–224.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic representation of optical imaging system model: ( x o , y o ) and ( x I , y I ) are the local coordinates in the object plane and image plane, respectively. Subscripts (0 and 1) denote object and image space, respectively. ( ξ i , η i ) , i = 0 , 1 are the sine coordinates of the spherical pupils. ( ξ , η ) is the tangential coordinate of the spherical exit pupil. R i , i = 0 , 1 are the radii of the spherical pupils. a i , i = 0 , 1 are the aperture radii of the spherical pupils. a 1 is the aperture radius of the tangential plane of the spherical exit pupil.

Fig. 2.
Fig. 2.

Components of electric field vector on spherical entrance pupil: k ^ 0 is the unit normal vector to the spherical surface, and s ^ 0 and p ^ 0 are the unit vectors of the perpendicular and parallel states of linear polarization, respectively.

Fig. 3.
Fig. 3.

Comparison of RS integral and Debye integral. (a) Normalized amplitude distributions on the z axis. (b) Phase distributions on the radial axis in the image plane. Result is computed under the following conditions: image magnification M = 60 , pupil magnification M p = 10 6 , refractive indices n 0 = 1.0 , n 1 = 1.0 , wavelength λ = 632.8 nm , focal length f = 3.0 mm , and numerical aperture of the lens is 0.7.

Fig. 4.
Fig. 4.

(a) Schematic representation of the FDTD model, which consists of three areas: ①, ②, ③ denote the total field area, scattering field area, and CPML absorption boundary condition, respectively. (b) Object model of a mold with linear step structure.

Fig. 5.
Fig. 5.

Normalized amplitude images of the incident plane wave near the image plane. (a) NFFF surface Ω i is small (side length is 10 μm). (b) NFFF surface Ω i is sufficiently large (side length is 100 μm).

Fig. 6.
Fig. 6.

Sketch of off-axis digital holographic microscope used to demonstrate our model. BS 1 , BS 2 : beam splitters, M 1 , M 2 : mirrors, P 1 : half-wave plate, S 1 : special filter, O: object, MO: microscopic object lens, I: image plane. The beam splitter BS 2 is slightly inclined.

Fig. 7.
Fig. 7.

Extraction of the object wave on the hologram plane from the digital holograms of the simulation (the top row) and the experiment (the bottom row). (a), (e) the digital hologram; (b), (f) the frequency spectrum of the digital hologram; (c), (g) the digital masking; and (d), (h) the amplitude distribution of the object wave on the hologram plane.

Fig. 8.
Fig. 8.

(a), (b) Amplitude distribution. (c), (d) Phase distributions of the borosilicate glass microsphere in the X Z plane obtained by the simulation (left column) and the experiment (right column).

Fig. 9.
Fig. 9.

Amplitude and height distributions of the borosilicate glass microsphere in the focus plane obtained by the simulation (left column) and the experiment (right column). (a), (b) Amplitude distribution. (c), (d) Height distribution. (e), (f) 3D graph of (c), (d).

Fig. 10.
Fig. 10.

(a), (b) Amplitude distributions and (c), (d) phase distributions of the mold with linear step structure in the X Z plane obtained by the simulation (left column) and the experiment (right column).

Fig. 11.
Fig. 11.

(a), (b) Amplitude distributions and (c), (d) height distributions of the mold with linear step structure in the focus plane obtained by the simulation (left column) and the experiment (right column). (e), (f) Height distribution on the cross-section at Y = 0 .

Fig. 12.
Fig. 12.

Exact and simulated height distributions of microlenses having different refractive indices n and maximum heights H : (a)  H = 0.5 μm . (b)  H = 2.0 μm . (c)  H = 3.0 μm . (d)  H = 4.0 μm .

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

n 0 | E 0 | 2 d S 0 = n 1 | E 1 | 2 d S 1 .
d S i = R i 2 d k i , x d k i , y k i k i , z , i = 0 , 1 .
| E 1 | = R 0 R 1 k 1 , z k 0 , z d k 0 , x d k 0 , y d k 1 , x d k 1 , y | E 0 |
M = k 0 , x k 1 , x = k 0 , y k 1 , y = n 0 s 0 n 1 s 1 ,
| E 1 | = 1 M p n 0 n 1 ( 1 s 1 2 ρ 2 ) 1 / 4 ( 1 n 1 2 M 2 s 1 2 ρ 2 / n 0 2 ) 1 / 4 | E 0 | 1 M p n 0 n 1 T R ( ρ ) | E 0 | .
E 0 , p ( ρ , θ ) = E 0 , x cos θ + E 0 , y sin θ cos α 0
E 0 , s ( ρ , θ ) = E 0 , x sin θ + E 0 , y cos θ .
[ E 1 , s ( ρ , θ ) E 1 , p ( ρ , θ ) ] = 1 M p n 0 n 1 T R ( ρ ) [ E 0 , s ( ρ , θ ) E 0 , p ( ρ , θ ) ] .
E 1 , x ( ρ , θ ) = E 1 , p cos α 1 cos θ E 1 , s sin θ
E 1 , y ( ρ , θ ) = E 1 , p cos α 1 sin θ + E 1 , s cos θ
E 1 , z ( ρ , θ ) = E 1 , p sin α 1 .
E 1 , x ( ρ , θ ) = T R ( ρ ) T I ( ρ , θ ) M p n 0 n 1 [ ( 1 s 1 2 ρ 2 ) 1 / 2 ( 1 n 1 2 M 2 s 1 2 ρ 2 / n 0 2 ) 1 / 2 × ( E 0 , x ( ρ , θ ) cos 2 θ + E 0 , y ( ρ , θ ) cos θ sin θ ) + ( E 0 , x ( ρ , θ ) sin 2 θ E 0 , y ( ρ , θ ) cos θ sin θ ) ]
E 1 , y ( ρ , θ ) = T R ( ρ ) T I ( ρ , θ ) M p n 0 n 1 [ ( 1 s 1 2 ρ 2 ) 1 / 2 ( 1 n 1 2 M 2 s 1 2 ρ 2 / n 0 2 ) 1 / 2 × ( E 0 , x ( ρ , θ ) cos θ sin θ + E 0 , y ( ρ , θ ) sin 2 θ ) + ( E 0 , x ( ρ , θ ) cos θ sin θ + E 0 , y ( ρ , θ ) cos 2 θ ) ]
E 1 , z ( ρ , θ ) = T R ( ρ ) T I ( ρ , θ ) M p n 0 n 1 s 1 ρ ( 1 n 1 2 M 2 s 1 2 ρ 2 / n 0 2 ) 1 / 2 × ( E 0 , x ( ρ , θ ) cos θ + E 0 , y ( ρ , θ ) sin θ ) .
ξ 1 = a 1 ρ cos θ
η 1 = a 1 ρ sin θ
E⃗ t ( ξ , η ) = R 1 2 ξ 2 + η 2 + R 1 2 T ( ξ , η ) E⃗ 1 ( ξ 1 , η 1 )
ξ = ξ 1 [ cos sin 1 ( ξ 1 2 + η 1 2 ) 1 / 2 R 1 ] 1
η = η 1 [ cos sin 1 ( ξ 1 2 + η 1 2 ) 1 / 2 R 1 ] 1 ,
E⃗ O ( x , y ) = 1 2 π ξ 2 + η 2 a 1 2 E⃗ t ( ξ , η ) exp ( i k 1 r ) r z r ( 1 r i k 1 ) d ξ d η ,
H ( x , y ) = | E⃗ O ( x , y ) | 2 + | E⃗ R ( x , y ) | 2 + E⃗ O * ( x , y ) E⃗ R ( x , y ) + E⃗ O ( x , y ) E⃗ R * ( x , y ) ,
E⃗ R ( x , y ) = E⃗ r exp [ i ( s x x + s y y + d x x 2 + d y y 2 ) ]
E⃗ ( r⃗ , ω ) = i ω μ 4 π r e i k r Ω [ r ^ × r ^ × J⃗ s ( r⃗ , ω ) e i k r⃗ · r ^ + 1 τ r ^ × M s ( r⃗ , ω ) e i k r⃗ · r ^ ] d S ,
E⃗ inc ( r⃗ , ω ) = i ω μ π r [ r ^ × r ^ × J⃗ s inc ( z , ω ) + 1 τ r ^ × M⃗ s inc ( z , ω ) ] × sin ( k r ^ 0 a ) k r ^ 0 sin ( k r ^ 1 b ) k r ^ 1 exp [ i k ( r ^ 2 z r ) ] ,
ξ 0 i j = a 0 a 1 ξ i cos tan 1 ( ξ i 2 + η j 2 ) 1 / 2 R 1
η 0 i j = a 0 a 1 η j cos tan 1 ( ξ i 2 + η j 2 ) 1 / 2 R 1
z 0 i j = ( R 0 2 ξ 0 i j 2 η 0 i j 2 ) 1 / 2 ,
I R ( X , Y ) = exp ( i k 1 Z ) i λ Z I H ( x , y ) exp { i k 1 2 Z [ ( x X ) 2 + ( y Y ) 2 ] } d x d y ,

Metrics