Abstract

This paper proposes an LED-based compound optical system, which can be involved in the design of the driving beam system in automotive headlamps with high system efficiency and low power consumption. The compound system can meet the requirements announced in the UNECE regulation “Addendum 111: Regulation No. 112 Revision 2.” Also, it is composed of a nonspherical reflector, a compound lens, and a two-dimensional diverging lens. Using a single device of high-brightness LED of merely 7.6 W, the specified illumination requirements for the driving beam can be achieved. As we have expected, on the test screen at a distance of 25 m, the simulation results, as well as the testing results for the prototype, can reach the illuminance distribution requirements, including all specified regions and key points. Moreover, this compound system enjoys the features of high compactness, high energy efficiency, and feasibility of manufacturing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).
    [CrossRef]
  2. A. Cvetkovic, O. Dross, J. Chaves, P. Benitez, J. C. Miñano, and R. Mohedano, “Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps,” Opt. Express 14, 13014–13020 (2006).
    [CrossRef]
  3. A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for nonrotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
    [CrossRef]
  4. J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).
    [CrossRef]
  5. A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
    [CrossRef]
  6. F. Chen, K. Wang, and Z. Qin, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
    [CrossRef]
  7. W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
    [CrossRef]
  8. UNECE Addendum 111: Regulation No. 112 Revision 2, 20 September 2010, Amendment 1, 27 January 2011, “Uniform provisions concerning the approval of motor vehicle headlamps emitting an asymmetrical passing beam or a driving beam or both and equipped with filament lamps and/or light-emitting diode (LED) module”.

2010

2008

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for nonrotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

2006

2005

T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).
[CrossRef]

2002

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).
[CrossRef]

2000

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Alvarez, J. L.

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).
[CrossRef]

Benitez, P.

Cassarly, W. J.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Chaves, J.

Chen, F.

Cvetkovic, A.

Davenport, T. L.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

David, S. R.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Domhardt, A.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for nonrotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

Dross, O.

Hernandez, M.

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).
[CrossRef]

Jenkins, D. G.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Lemmer, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for nonrotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

Luce, T.

T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).
[CrossRef]

Minano, J. C.

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).
[CrossRef]

Miñano, J. C.

Mohedano, R.

Qin, Z.

Riser, A. P.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Rohlfing, U.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for nonrotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

Wang, K.

Weingaertner, S.

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for nonrotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

Opt. Eng.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39, 1830–1839 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR optics for nonrotationally symmetric illumination design,” Proc. SPIE 7103, 710304 (2008).
[CrossRef]

J. L. Alvarez, M. Hernandez, P. Benitez, and J. C. Minano, “TIR-R concentrator: a new compact high-gain SMS design,” Proc. SPIE 4446, 32–42 (2002).
[CrossRef]

A. Domhardt, U. Rohlfing, and S. Weingaertner, “New design tools for LED headlamps,” Proc. SPIE 7003, 70032C (2008).
[CrossRef]

T. Luce, “LED headlamps—the spiny path to a legal headlamp,” Proc. SPIE 5663, 112–121 (2005).
[CrossRef]

Other

UNECE Addendum 111: Regulation No. 112 Revision 2, 20 September 2010, Amendment 1, 27 January 2011, “Uniform provisions concerning the approval of motor vehicle headlamps emitting an asymmetrical passing beam or a driving beam or both and equipped with filament lamps and/or light-emitting diode (LED) module”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Wireframe view of the compound system. (a) 3D view and (b) collimation system.

Fig. 2.
Fig. 2.

Compound lens and the reversing optics path.

Fig. 3.
Fig. 3.

Complete ray path of system. (a) Front view and (b) top view.

Fig. 4.
Fig. 4.

Simulation on test screen (a) simulation result for point source approximation. (b) Illuminance distribution curve for point source approximation. (c) Simulation result for real extended source. (d) Illuminance distribution curve for real extended source.

Fig. 5.
Fig. 5.

System prototype: (a) front view, (b) side view, (c) front view (lit), and (d) side view (lit).

Fig. 6.
Fig. 6.

Beam pattern on test screen at 25 m.

Fig. 7.
Fig. 7.

LED spectrum of 4000 K CCT.

Fig. 8.
Fig. 8.

CIE x, y chromacity coordinates on test screen.

Tables (4)

Tables Icon

Table 1. Parameters of the Combination Lens Group

Tables Icon

Table 2. Parameters of the Parabolic Surface and Extended Lens

Tables Icon

Table 3. Parameters of the Parabolic Surface and Extended Lens

Tables Icon

Table 4. Testing Results on Selected Test Points

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Lio=Dout8f,
Lo=Liof.
θmin=arctan(Dout2Lo).
nklknklk=nknkrk.
lk+1=lkdk,
dk=rkrk2(Dk2)2.
{nl1=n1r11l2nl2=0nl31l3=01lnl4=1nr4,{l2=l1d1l3=l2d2l4=l3d3,
l=(nnn1·r1d1n·d2d3+1nr4)1,
D4=Dout2Lio·2(l+d3).

Metrics