Abstract

This paper describes a method for tuning the resonant wavelengths of slab-coupled optical fiber sensors (SCOSs). This method allows multiple sensors to be interrogated simultaneously with a single tunable laser. The resonances are tuned by rotating a biaxial slab waveguide relative to an optical D-fiber. As the slab waveguide rotates, its effective index of refraction changes causing the coupling wavelengths of the slab waveguide and D-fiber to shift. A SCOS fabricated with potassium titanyl phosphate crystal as the slab waveguide is shown to have resonance tuning ranges of 6.67 and 22.24 nm, respectively, for TM and TE polarized modes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
    [CrossRef]
  2. C. R. Miller, “Electromagnetic Pulse Threats in 2010,” Report 11, (Center for Strategy and Technology, Air War College, Air University, Maxwell Air Force Base, Alabama, 2005).
  3. A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.
  4. Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
    [CrossRef]
  5. R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007).
    [CrossRef]
  6. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240 (2008).
    [CrossRef]
  7. W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
    [CrossRef]
  8. W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
    [CrossRef]
  9. R. Gibson, R. Selfridge, and S. Schultz, “Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides,” Appl. Opt. 48, 3695–3701 (2009).
    [CrossRef]
  10. S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
    [CrossRef]
  11. D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 764876480D (2010).
    [CrossRef]
  12. C. A. Millar, M. C. Brierley, and R. S. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using high-index overlay waveguide,” Opt. Lett. 12, 284–286 (1987).
    [CrossRef]
  13. B. Saleh, and M. Teich, Fundamentals of Photonics (Wiley, 2007).
  14. J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
    [CrossRef]
  15. S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
    [CrossRef]

2012 (1)

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

2011 (1)

2010 (1)

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 764876480D (2010).
[CrossRef]

2009 (1)

2008 (2)

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240 (2008).
[CrossRef]

2007 (1)

2006 (1)

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

2004 (1)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

1987 (1)

1986 (1)

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

1978 (1)

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Arweiler, C. B.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Baum, C. E.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Bierlein, J. D.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Breen, E. L.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Brierley, M. C.

Bui, K.

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

Cao, Z.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Chadderdon, S.

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

S. Chadderdon, R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

Forber, R.

Gibson, R.

Giles, J. C.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Kvavle, J.

Li, Y. Y.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Lin, W.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Lotem, H.

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

Mallinson, R. S.

Marshall, H.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Millar, C. A.

Miller, C. R.

C. R. Miller, “Electromagnetic Pulse Threats in 2010,” Report 11, (Center for Strategy and Technology, Air War College, Air University, Maxwell Air Force Base, Alabama, 2005).

O’Neill, J.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Perry, D.

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 764876480D (2010).
[CrossRef]

Pevler, A. E.

A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.

Saleh, B.

B. Saleh, and M. Teich, Fundamentals of Photonics (Wiley, 2007).

Schaafsma, D.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Schreeve, B.

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 764876480D (2010).
[CrossRef]

Schultz, S.

Selfridge, D.

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 764876480D (2010).
[CrossRef]

Selfridge, R.

Skolnick, R.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Sower, G. D.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Sun, J.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Teich, M.

B. Saleh, and M. Teich, Fundamentals of Photonics (Wiley, 2007).

Van Wagoner, J.

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

Wang, L.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Wang, W.

Wang, W. C.

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Wang, Z.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Zhan, P.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys. A 92, 291–294 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

IEEE Trans Antennas Propag. (1)

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Opt. Eng. (2)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

S. Chadderdon, D. Perry, J. Van Wagoner, R. Selfridge, and S. Schultz, “Multi-axis, all-dielectric electric field sensors,” Proc. SPIE 8376, 837608 (2012).
[CrossRef]

D. Perry, R. Gibson, B. Schreeve, S. Schultz, and D. Selfridge, “Multi-axial fiber-optic electric field sensor,” Proc. SPIE 764876480D (2010).
[CrossRef]

Other (3)

C. R. Miller, “Electromagnetic Pulse Threats in 2010,” Report 11, (Center for Strategy and Technology, Air War College, Air University, Maxwell Air Force Base, Alabama, 2005).

A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.

B. Saleh, and M. Teich, Fundamentals of Photonics (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Diagrams of SCOS comprising an EO slab on an etched D-fiber.

Fig. 2.
Fig. 2.

Scanning electron microscope image of a D-fiber.

Fig. 3.
Fig. 3.

Transmission spectrum of a SCOS consisting of periodic resonant dips. The SCOS is interrogated by tuning a laser to the edge of a resonant mode and measuring the change in the transmitted power.

Fig. 4.
Fig. 4.

Ray diagram showing polarization of light as it couples between the D-fiber and slab waveguide for (a) TE and (b) TM polarized modes.

Fig. 5.
Fig. 5.

Interrogation of multiple SCOSs using a single tunable laser.

Fig. 6.
Fig. 6.

Rotation of biaxial crystal on the optical fiber.

Fig. 7.
Fig. 7.

Resonant mode shift as a function of KTP crystal rotation for TE (dashed) and TM (solid) polarization with three measured values shown with dots.

Fig. 8.
Fig. 8.

Resonant mode wavelengths of a z-cut KTP SCOS for three different crystal rotations. The top portion of the figure shows pictures of the SCOS that were used to determine the crystal rotations.

Fig. 9.
Fig. 9.

SCOS configuration for a two-axis electric field sensor.

Fig. 10.
Fig. 10.

X-cut (dashed) and z-cut (dashed–dotted) KTP SCOS transmission spectra when the principal refractive indices of the crystals are aligned to the optical fiber and the spectrum of the z-cut SCOS (solid) after its resonant mode is tuned to overlap the x-cut SCOS.

Fig. 11.
Fig. 11.

Testing setup used to interrogate the two-axis SCOS, where PD is the photodetector, TIA is the transimpedance amplifier, HV is the high-voltage amplifier, and OSC is the oscilloscope.

Fig. 12.
Fig. 12.

Measured electric field signals as a function of incident field angle for two orthogonally placed SCOSs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λm=2tmns2N2,
θs=sin1(Nns).
ns=nfnnnf2sin2(θs)+nn2cos2(θs).
ns=nt=nxnynx2sin2(ϕ)+ny2cos2(ϕ).
nf=nxnynx2cos2(ϕ)+ny2sin2(ϕ),
nn=nz.
Pt=CE(t),

Metrics