Abstract

We propose a simple intrinsic Fabry–Perot interferometer (FPI) based on single-mode fiber, where a thin film is formed by arc discharge to serve as one mirror of the FPI cavity. The temperature and refractive-index (RI) characteristics of the proposed device are investigated. Experimental results show that the device can provide temperature-independent measurement of RI with a fringe-contrast sensitivity of 72.59dB/RIU (RI units). Meanwhile, it can also be used as a temperature sensor with a wavelength sensitivity of 8pm/°C. Therefore, the potential simultaneous measurement of RI and temperature could be realized by detecting the variations of fringe contrast and wavelength, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992).
    [CrossRef]
  2. D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
    [CrossRef]
  3. T. W. Kao and H. F. Taylor, “High-sensitivity intrinsic fiber-optic Fabry-Perot pressure sensor,” Opt. Lett. 21, 615–617 (1996).
    [CrossRef]
  4. S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
    [CrossRef]
  5. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764–5769 (2008).
    [CrossRef]
  6. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007).
    [CrossRef]
  7. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A Phys. 138, 248–260 (2007).
    [CrossRef]
  8. J.-L. Kou, J. Feng, Q.-J. Wang, F. Xu, and Y.-Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35, 2308–2310 (2010).
    [CrossRef]
  9. W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor,” J. Lightwave Technol. 19, 682–686 (2001).
    [CrossRef]
  10. Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005).
    [CrossRef]
  11. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18, 141–149 (2010).
    [CrossRef]
  12. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Opt. Lett. 33, 2455–2457 (2008).
    [CrossRef]
  13. O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
    [CrossRef]
  14. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry–Perot interferometer,” Opt. Lett. 34, 2441–2443 (2009).
    [CrossRef]
  15. D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29, 912–915 (2012).
    [CrossRef]
  16. S. Silva, L. Coelho, R. M. André, and O. Frazão, “Gas refractometry based on an all-fiber spatial optical filter,” Opt. Lett. 37, 3450–3452 (2012).
    [CrossRef]
  17. D.-L. Kim, M. Tomozawa, S. Dubois, and G. Orcel, “Fictive temperature measurement of single-mode optical-fiber core and cladding,” J. Lightwave Technol. 19, 1155–1158 (2001).
    [CrossRef]
  18. K. Morishita and Y. Miyake, “Fabrication and resonance wavelength of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004).
    [CrossRef]
  19. K. Morishita and A. Kaino, “Adjusting resonance wavelength of long-period fiber gratings by the glass-structure change,” Appl. Opt. 44, 5018–5023 (2005).
    [CrossRef]
  20. Y. Q. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009).
    [CrossRef]
  21. H. Kakiuchida, “Refractive index and density in F- and Cl-doped silica glasses,” Appl. Phys. Lett. 86, 161907 (2005).
    [CrossRef]
  22. K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
    [CrossRef]
  23. Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148, 33–38 (2008).
    [CrossRef]

2012

2010

2009

2008

2007

Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007).
[CrossRef]

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A Phys. 138, 248–260 (2007).
[CrossRef]

2005

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

K. Morishita and A. Kaino, “Adjusting resonance wavelength of long-period fiber gratings by the glass-structure change,” Appl. Opt. 44, 5018–5023 (2005).
[CrossRef]

H. Kakiuchida, “Refractive index and density in F- and Cl-doped silica glasses,” Appl. Phys. Lett. 86, 161907 (2005).
[CrossRef]

2004

2003

D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
[CrossRef]

2001

1997

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

1996

1992

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992).
[CrossRef]

1990

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

Aizawa, Y.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

André, R. M.

Aref, S. H.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Badcock, R. A.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A Phys. 138, 248–260 (2007).
[CrossRef]

Baptista, J. M.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Booth, D. J.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Chen, X. P.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

Cheng, G. H.

Chiang, K. S.

Choi, E. S.

Choi, H. Y.

Claus, R. O.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992).
[CrossRef]

Coelho, L.

Collins, S. F.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Coviello, G.

Deng, M.

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148, 33–38 (2008).
[CrossRef]

Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123–14128 (2007).
[CrossRef]

Duan, D. W.

Duan, D.-W.

D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29, 912–915 (2012).
[CrossRef]

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148, 33–38 (2008).
[CrossRef]

Dubois, S.

Farahi, F.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Feng, J.

Fernando, G. F.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A Phys. 138, 248–260 (2007).
[CrossRef]

Finazzi, V.

Frazao, O.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Frazão, O.

Garchev, D. D.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Gunther, M. F.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992).
[CrossRef]

Han, Y. K.

Hong, C. S.

D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
[CrossRef]

Huang, Z. Y.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

Kaddu, S. C.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Kaino, A.

Kakiuchida, H.

H. Kakiuchida, “Refractive index and density in F- and Cl-doped silica glasses,” Appl. Phys. Lett. 86, 161907 (2005).
[CrossRef]

Kang, H. K.

D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
[CrossRef]

Kao, T. W.

Kawakami, S.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

Kim, C. G.

D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
[CrossRef]

Kim, D. H.

D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
[CrossRef]

Kim, D.-L.

Kobelke, J.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Kou, J.-L.

Latifi, H.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Lee, B. H.

Lee, H. W.

Li, Y. J.

Lin, C.-J.

Liu, Y. Q.

Lu, Y.-Q.

Machavaram, V. R.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A Phys. 138, 248–260 (2007).
[CrossRef]

Miyake, Y.

Morishita, K.

Mudhana, G.

Murphy, K. A.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992).
[CrossRef]

Orcel, G.

Paek, U. C.

Park, J. W.

D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
[CrossRef]

Park, K. S.

Park, S. J.

Pruneri, V.

Rao, Y. J.

Rao, Y.-J.

D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29, 912–915 (2012).
[CrossRef]

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148, 33–38 (2008).
[CrossRef]

Santos, J. L.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Schuster, K.

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

Shiraishi, K.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8, 1151–1161 (1990).
[CrossRef]

Silva, S.

Taylor, H. F.

Tomozawa, M.

Tsai, H. L.

Tsai, W.-H.

Villatoro, J.

Wang, A.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992).
[CrossRef]

Wang, A. B.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

Wang, Q.-J.

Wei, T.

Xiao, H.

Xu, F.

Yang, X. C.

Zhu, T.

Zhu, Y. Z.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Kakiuchida, “Refractive index and density in F- and Cl-doped silica glasses,” Appl. Phys. Lett. 86, 161907 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry–Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett. 17, 2403–2405 (2005).
[CrossRef]

O. Frazao, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Perot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1229–1231 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun. 142, 189–192 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators A Phys.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A Phys. 138, 248–260 (2007).
[CrossRef]

Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A Phys. 148, 33–38 (2008).
[CrossRef]

Smart Mater. Struc.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Pérot sensor for strain and crack opening displacement measurements from −200 to 900 degrees C,” Smart Mater. Struc. 1, 237–242 (1992).
[CrossRef]

D. H. Kim, J. W. Park, H. K. Kang, C. S. Hong, and C. G. Kim, “Measuring dynamic strain of structures using a gold-deposited extrinsic Fabry–Perot interferometer,” Smart Mater. Struc. 12, 1–5 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Illustration of volume–temperature variation of a glass under different heating and cooling processes.

Fig. 2.
Fig. 2.

(a) Schematic diagram of the arc discharge. The microscopic image of the end face of SMF discharged by (b) 0, (c) 7, and (d) 10 times, respectively.

Fig. 3.
Fig. 3.

Light power reflected from the fiber tips formed by different arc discharge times at 1550 nm. The inset shows the overall reflective spectrum.

Fig. 4.
Fig. 4.

(a) Schematic diagram of the SS-FPI and (b) microscopic image of the SS-FPI with L=413μm.

Fig. 5.
Fig. 5.

Measured reflective spectra of the SS-FPI in air and water with L=413μm.

Fig. 6.
Fig. 6.

Spatial frequency spectra of the SS-FPI with L=413μm.

Fig. 7.
Fig. 7.

Variations of the fringe contrast with the RI; the inset shows the spectral response to the RI change.

Fig. 8.
Fig. 8.

Fringe contrast measured under different temperatures. Inset shows the reflective spectra versus temperature.

Fig. 9.
Fig. 9.

Wavelength of dip 1529.6 nm measured in different temperatures.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Loss=10log10(IreflectedIinput)=10log10(R),
Loss=10log10(IreflectedIinput)=10log10(R),
R=(ncorenairncore+nair)2R=(nnairn+nair)2,
RR=(nnairn+nair)2(ncorenairncore+nair)2=10LossLoss10.
ξ=2λ02neffL,

Metrics