Abstract

In this paper, the equivalent particle number density distribution of gas and plasma flow fields is investigated. For the purpose of facilitating comparison, argon gas and argon arc plasma are chosen as practical examples for experiment. The equivalent particle number density distributions of the argon gas and argon arc plasma are reconstructed from the experimentally measured refractive index distributions obtained by moiré tomography, while five cross sections, which are 7, 8.5, 10, 11.5, and 13 mm away from the jet nozzle are chosen for practical calculation and comparison. In experiment, the probe wavelength and the export pressure of argon gas and argon arc plasma are the same. The experimental results manifest that (1) the equivalent particle number density decreases with the distance away from the jet nozzle of the gas flow field, while (2) the equivalent particle number density of the plasma flow field has a different variation. Finally, the experimental results are theoretically explained and analyzed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Synder and L. Hesselink, “Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade,” Appl. Opt. 23, 3650–3656 (1984).
    [CrossRef]
  2. C. Soller, R. Wenskus, P. Middendorf, G. Meier, and F. Obermeier, “Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow,” Appl. Opt. 33, 2921–2932 (1994).
    [CrossRef]
  3. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flame by moiré deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
    [CrossRef]
  4. A. F. Ibarreta and C.-J. Sung, “Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow Schlieren deflectometry,” Appl. Opt. 44, 3565–3575 (2005).
    [CrossRef]
  5. Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
    [CrossRef]
  6. Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
    [CrossRef]
  7. Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A uniform description of the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
    [CrossRef]
  8. P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
    [CrossRef]
  9. U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
    [CrossRef]
  10. C. W. Allen, “Radiation,” in Astrophysical Quantities (Athlone, 1963), Chap. 5, p. 92.

2011 (1)

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

2010 (1)

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A uniform description of the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

2009 (2)

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

2006 (1)

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[CrossRef]

2005 (1)

1994 (1)

1984 (1)

1981 (1)

Aigner, M.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[CrossRef]

Allen, C. W.

C. W. Allen, “Radiation,” in Astrophysical Quantities (Athlone, 1963), Chap. 5, p. 92.

Bar-Ziv, E.

Chen, Y.-Y.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A uniform description of the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

Duan, X. R.

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[CrossRef]

Glatt, I.

He, A. Z.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A uniform description of the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

He, A.-Z.

Hesselink, L.

Ibarreta, A. F.

Kafri, O.

Keren, E.

Kim, I. S.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

Li, Z.-H.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A uniform description of the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

Meier, G.

Meier, W.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[CrossRef]

Middendorf, P.

Obermeier, F.

Sadanandan, R.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

Soller, C.

Song, Y.

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A uniform description of the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Y.-Y. Chen, Y. Song, A.-Z. He, and Z.-H. Li, “Applicability of moiré deflection tomography for diagnosing arc plasmas,” Appl. Opt. 48, 489–496 (2009).
[CrossRef]

Stöhr, M.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

Stopper, U.

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

Stricker, W.

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[CrossRef]

Sung, C.-J.

Synder, R.

Weigand, P.

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[CrossRef]

Wenskus, R.

Appl. Opt. (5)

Combust. Flame (1)

P. Weigand, W. Meier, X. R. Duan, W. Stricker, and M. Aigner, “Investigations of swirl flames in a gas turbine model combustor I. Flow field, structures, temperature, and species distributions,” Combust. Flame 144, 205–224 (2006).
[CrossRef]

J. Eng. Gas Turb. Power (1)

U. Stopper, M. Aigner, W. Meier, R. Sadanandan, M. Stöhr, and I. S. Kim, “Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques,” J. Eng. Gas Turb. Power 131, 021504 (2009).
[CrossRef]

Opt. Commun. (2)

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A model for arc plasma’s optical diagnosis by the measurement of the refractive index,” Opt. Commun. 284, 2648–2652 (2011).
[CrossRef]

Y.-Y. Chen, Y. Song, Z.-H. Li, and A. Z. He, “A uniform description of the gas and plasma flow fields’ refractive index,” Opt. Commun. 283, 4214–4218 (2010).
[CrossRef]

Other (1)

C. W. Allen, “Radiation,” in Astrophysical Quantities (Athlone, 1963), Chap. 5, p. 92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of moiré deflectometry. 1, laser (532 nm); 2, expander lens; 3, collimating lens; 4, flame; 5 and 6, Ronchi gratings; 7 and 9, imaging lenses; 8, filter; and 10, screen.

Fig. 2.
Fig. 2.

Deflected moiré fringes of (a) argon arc plasma and (b) argon gas.

Fig. 3.
Fig. 3.

Referenced moiré fringes.

Fig. 4.
Fig. 4.

3-D refractive index distributions of the argon arc plasma: (a) cross section 1, (b) cross section 2, (c) cross section 3, (d) cross section 4, and (e) cross section 5.

Fig. 5.
Fig. 5.

3-D refractive index distributions of the argon gas: (a) cross section 1, (b) cross section 2, (c) cross section 3, (d) cross section 4, and (e) cross section 5.

Fig. 6.
Fig. 6.

Radial distributions of the refractive indices of (a) argon arc plasma and (b) argon gas.

Fig. 7.
Fig. 7.

Radial distributions of the equivalent particle number densities of (a) argon arc plasma and (b) argon gas.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n1=CnNequal,
Nequal(g)=PgκTg,
Nequal(p)=Nn+δNi+CeCnNe,
Nequal(p)=PκT+(δ+CeCn2)(K+1K12+PK1κT),
K1=CZ1Z0T32exp(E1κT),C=2(2πκmeh2)32

Metrics