Abstract

To improve the tuning relation accuracy of an acousto-optic tunable filter, the conventional separated laser and broadband light methods were combined. The single laser test measured one accurate point and corrected the large amounts of data obtained from the broadband light method. The final tuning relation was fitted by the corrected data. A simulation and an experiment for several methods were conducted for comparison. The relative error was reduced from 0.2% to 0.05% in the 430785nm range. The equivalent wavelength accuracy improved from 1 to 0.2 nm. This method solved the problems associated with the use of a single laser source with few test data values and a single broadband light source with poor collimation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Fulton and G. Horlick, “AOTFs as atomic spectrometers: basic characteristics,” Appl. Spectrosc. 50, 885–892 (1996).
    [CrossRef]
  2. M. S. Baptista and C. D. Tran, “Near-infrared thermal lens spectrometer based on an erbium-doped fiber amplifier and an acousto-optic tunable filter, and its application in the determination of nucleotides,” Appl. Opt. 36, 7059–7065 (1997).
    [CrossRef]
  3. N. Gupta and R. Dahmani, “AOTF Raman spectrometer for remote detection of explosives,” Spectrochim. Acta (A) 56, 1453–1456 (2000).
    [CrossRef]
  4. A. Y. S. Cheng, J. Zhu, and M. C. Y. Pau, “Characterization of a noncolinear acousto-optic tunable filter and its resolution enhancement as a near-infrared spectrometer,” Appl. Spectrosc. 55, 350–355 (2001).
    [CrossRef]
  5. G. Coquin and K. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
    [CrossRef]
  6. C. D. Tran and R. J. Furlan, “Electronic tuning, amplitude modulation of lasers by a computer-controlled acousto-optic tunable filter,” Appl. Spectrosc. 46, 1092–1095 (1992).
    [CrossRef]
  7. N. Saito, S. Wada, and H. Tashiro, “Dual-wavelength oscillation in an electronically tuned Ti:sapphire laser,” J. Opt. Soc. Am. B 18, 1288–1296 (2001).
    [CrossRef]
  8. D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003).
    [CrossRef]
  9. G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34, 1879–1881 (2009).
    [CrossRef]
  10. M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3, 958–965 (2012).
    [CrossRef]
  11. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
    [CrossRef]
  12. E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35, 5220–5226 (1996).
    [CrossRef]
  13. N. Gupta, L. J. Denes, M. Gottlieb, D. R. Suhre, B. Kaminsky, and P. Metes, “Object detection with a field-portable spectropolarimetric imager,” Appl. Opt. 40, 6626–6632 (2001).
    [CrossRef]
  14. V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
    [CrossRef]
  15. N. Gupta and D. R. Suhre, “Acousto-optic tunable filter imaging spectrometer with full Stokes polarimetric capability,” Appl. Opt. 46, 2632–2637 (2007).
    [CrossRef]
  16. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  17. P. A. Gass and J. R. Sambles, “Accurate design of a noncollinear acousto-optic tunable filter,” Opt. Lett. 16, 429–431 (1991).
    [CrossRef]
  18. D. R. Suhre and J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35, 4494–4501 (1996).
    [CrossRef]
  19. G. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
    [CrossRef]
  20. N. Gupta and V. B. Voloshinov, “Hyperspectral imaging performance of a TeO2 acoustooptic tunable filter in the ultraviolet region,” Opt. Lett. 30, 985–987 (2005).
    [CrossRef]
  21. N. Gupta and V. B. Voloshinov, “Development and characterization of two-transducer imaging acousto-optic tunable filters with extended tuning range,” Appl. Opt. 46, 1081–1088 (2007).
    [CrossRef]
  22. A. P. Goutzoulis, M. S. Gottlieb, and D. R. Pape, “Testing of acousto-optic devices,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis and D. R. Pape, eds. (Marcel Dekker, 1994), pp. 403–464.
  23. G. Georgiev and L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
    [CrossRef]
  24. E. G. Bucher and J. W. Carnahan, “Characterization of an acousto-optic tunable filter and use in visible spectrophotometry,” Appl. Spectrosc. 53, 603–611 (1999).
    [CrossRef]
  25. J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
    [CrossRef]
  26. J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010).
    [CrossRef]
  27. Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
    [CrossRef]
  28. Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
    [CrossRef]
  29. Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
    [CrossRef]
  30. V. Pozhar and A. Machihin, “Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals,” Appl. Opt. 51, 4513–4519 (2012).
    [CrossRef]
  31. J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010).
    [CrossRef]

2012

M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3, 958–965 (2012).
[CrossRef]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

V. Pozhar and A. Machihin, “Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals,” Appl. Opt. 51, 4513–4519 (2012).
[CrossRef]

2011

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

2010

J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

2009

2007

2005

2003

2002

2001

2000

N. Gupta and R. Dahmani, “AOTF Raman spectrometer for remote detection of explosives,” Spectrochim. Acta (A) 56, 1453–1456 (2000).
[CrossRef]

1999

1997

1996

1994

1992

1991

1988

G. Coquin and K. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

1974

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Amorós-López, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010).
[CrossRef]

Anand, A.

Baptista, M. S.

Bergstralh, J.

Bucher, E. G.

Bürmen, M.

J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010).
[CrossRef]

Calpe-Maravilla, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

Carnahan, J. W.

Chang, I. C.

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Cheng, A. Y. S.

Cheung, K.

G. Coquin and K. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

Coquin, G.

G. Coquin and K. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

Dahmani, R.

N. Gupta and R. Dahmani, “AOTF Raman spectrometer for remote detection of explosives,” Spectrochim. Acta (A) 56, 1453–1456 (2000).
[CrossRef]

Denes, L. J.

Dubey, S.

Duelk, M.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Farkas, D. L.

Fulton, G.

Furlan, R. J.

Gass, P. A.

Georgiev, G.

G. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
[CrossRef]

G. Georgiev and L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Glenar, D. A.

Gómez-Chova, L.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010).
[CrossRef]

Gottlieb, M.

Gottlieb, M. S.

A. P. Goutzoulis, M. S. Gottlieb, and D. R. Pape, “Testing of acousto-optic devices,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis and D. R. Pape, eds. (Marcel Dekker, 1994), pp. 403–464.

Goutzoulis, A. P.

A. P. Goutzoulis, M. S. Gottlieb, and D. R. Pape, “Testing of acousto-optic devices,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis and D. R. Pape, eds. (Marcel Dekker, 1994), pp. 403–464.

Gupta, N.

Hamamoto, K.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Hillman, J. J.

Hinokuma, Y.

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Hinosugi, H.

Horlick, G.

Kaminsky, B.

Katrašnik, J.

J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010).
[CrossRef]

Konstantinov, L.

G. Georgiev and L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Kurokawa, T.

Likar, B.

J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010).
[CrossRef]

Linde, B. B. J.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

Machihin, A.

Mehta, D. S.

Metes, P.

Minato, T.

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Mukai, K.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Navaretti, P.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Niu, W.

Pape, D. R.

A. P. Goutzoulis, M. S. Gottlieb, and D. R. Pape, “Testing of acousto-optic devices,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis and D. R. Pape, eds. (Marcel Dekker, 1994), pp. 403–464.

Pau, M. C. Y.

Pernuš, F.

J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010).
[CrossRef]

Pozhar, V.

Rinehart, M.

Saif, B.

Saito, N.

Saito, S.

Sambles, J. R.

Shakher, C.

Sheoran, G.

Suhre, D. R.

Takeda, M.

Tashiro, H.

Theodore, J. G.

Tran, C. D.

Velez, C.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Vila-Francés, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010).
[CrossRef]

Voloshinov, V. B.

Wachman, E. S.

Wada, S.

Wax, A.

Yushkov, K. B.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

Zang, Z.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Zhu, J.

Zhu, Y.

Appl. Opt.

M. S. Baptista and C. D. Tran, “Near-infrared thermal lens spectrometer based on an erbium-doped fiber amplifier and an acousto-optic tunable filter, and its application in the determination of nucleotides,” Appl. Opt. 36, 7059–7065 (1997).
[CrossRef]

D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003).
[CrossRef]

D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
[CrossRef]

E. S. Wachman, W. Niu, and D. L. Farkas, “Imaging acousto-optic tunable filter with 0.35-micrometer spatial resolution,” Appl. Opt. 35, 5220–5226 (1996).
[CrossRef]

N. Gupta, L. J. Denes, M. Gottlieb, D. R. Suhre, B. Kaminsky, and P. Metes, “Object detection with a field-portable spectropolarimetric imager,” Appl. Opt. 40, 6626–6632 (2001).
[CrossRef]

N. Gupta and D. R. Suhre, “Acousto-optic tunable filter imaging spectrometer with full Stokes polarimetric capability,” Appl. Opt. 46, 2632–2637 (2007).
[CrossRef]

D. R. Suhre and J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35, 4494–4501 (1996).
[CrossRef]

G. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
[CrossRef]

N. Gupta and V. B. Voloshinov, “Development and characterization of two-transducer imaging acousto-optic tunable filters with extended tuning range,” Appl. Opt. 46, 1081–1088 (2007).
[CrossRef]

V. Pozhar and A. Machihin, “Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals,” Appl. Opt. 51, 4513–4519 (2012).
[CrossRef]

Appl. Phys. Lett.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Appl. Spectrosc.

Biomed. Opt. Express

Chemom. Intell. Lab. Syst.

J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010).
[CrossRef]

Electron. Lett.

G. Coquin and K. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, and K. Hamamoto, “High power (>110  mW) superluminescent diodes by using active multi-mode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

IEICE Trans. Electron.

Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, and K. Hamamoto, “High power and stable high coupling efficiency (66%) superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

J. Electron. Imaging

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010).
[CrossRef]

J. Opt. A

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341–347 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

Opt. Laser Technol.

G. Georgiev and L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997).
[CrossRef]

Opt. Lett.

Spectrochim. Acta (A)

N. Gupta and R. Dahmani, “AOTF Raman spectrometer for remote detection of explosives,” Spectrochim. Acta (A) 56, 1453–1456 (2000).
[CrossRef]

Other

A. P. Goutzoulis, M. S. Gottlieb, and D. R. Pape, “Testing of acousto-optic devices,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis and D. R. Pape, eds. (Marcel Dekker, 1994), pp. 403–464.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Three-dimensional wave vector diagram of TeO2 AOTF.

Fig. 2.
Fig. 2.

Experimental setup for measuring the tuning relation with a broadband light source.

Fig. 3.
Fig. 3.

Tuning relation error introduced by beam deviation.

Fig. 4.
Fig. 4.

Spectral responses for different incident directions at a certain frequency.

Fig. 5.
Fig. 5.

Experimental setup for the tuning relation measurement using a laser source.

Fig. 6.
Fig. 6.

Simulated results for different methods.

Fig. 7.
Fig. 7.

Average relative errors of selecting different corrected laser wavelengths.

Fig. 8.
Fig. 8.

Tuning relation experimental results: (a) relative errors between the four methods and (b) equivalent wavelength errors between the four methods.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

(xA,yA,zA)=2πnoλ(sinθisinφ,sinθicosφ,cosθi),
x=2πnoλsinθisinφ,z=2πnoλ(tanαsinθicosφ+cosθi)ytanα.
x2ne2+y2ne2+z2no2=(2πλ)2,
fa=Va2π[(xAxB)2+(yAyB)2+(zAzB)2]1/2,
fa=VaΔn(λ)λF(θi*),
F(θi*)=λpfapVaΔn(λp).
fa*=VaΔn(λ*)λ*F(θi*).
fa*=VaΔn(λw)λwF(θiw),
ε=F(θi*)F(θiw)=λ*Δn(λw)λwΔn(λ*).
faj=VaΔn(λj)λjF(θiw).
εfaj=VaΔn(λj)λjF(θi*).
faj*=εfaj.
fa=γ1Δn(λ)λ+γ0+γ1λ+γ2λ2++γmλm,

Metrics