Abstract

The use of subwavelength diameter tapered optical fibers (TOFs) in warm rubidium vapor has recently been identified as a promising system for realizing ultralow-power nonlinear optical effects. However, at the relatively high atomic densities needed for many of these experiments, rubidium atoms accumulating on the TOF surface can cause a significant loss of overall transmission through the fiber. Here we report direct measurements of the time scale associated with this transmission degradation for various rubidium density conditions. Transmission is affected almost immediately after the introduction of rubidium vapor into the system, and declines rapidly as the density is increased. More significantly, we show how a heating element designed to raise the TOF temperature can be used to reduce this transmission loss and dramatically extend the effective TOF transmission lifetime.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [CrossRef]
  2. G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989).
    [CrossRef]
  3. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
    [CrossRef]
  4. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
    [CrossRef]
  5. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shariar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19, 22874–22881 (2011).
    [CrossRef]
  6. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
    [CrossRef]
  7. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [CrossRef]
  8. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
    [CrossRef]
  9. K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
    [CrossRef]
  10. V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
    [CrossRef]
  11. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
    [CrossRef]
  12. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
    [CrossRef]
  13. S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).
  14. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” Nat. Commun.4, 1548 (2013).
  15. A. D. Slepkov, A. R. Bhagwat, V. Venkataraan, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16, 18976 (2008).
    [CrossRef]
  16. S. M. Hendrickson, T. B. Pittman, and J. D. Franson, “Nonlinear transmission through a tapered fiber in rubidium vapor,” J. Opt. Soc. Am. B 26, 267–271 (2009).
    [CrossRef]
  17. M. Fujiwara, K. Toubara, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
    [CrossRef]
  18. T. A. Birk and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  19. E. R. L. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Opt. 37, 1762–1763 (1998).
    [CrossRef]
  20. D. A. Steck, “Alkali D Line Data,” http://steck.us/alkalidata (2012).
  21. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavlength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [CrossRef]
  22. M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
    [CrossRef]
  23. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008).
    [CrossRef]
  24. M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
    [CrossRef]
  25. J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
    [CrossRef]

2012 (1)

M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[CrossRef]

2011 (4)

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shariar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19, 22874–22881 (2011).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

M. Fujiwara, K. Toubara, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
[CrossRef]

2010 (2)

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

2009 (5)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

S. M. Hendrickson, T. B. Pittman, and J. D. Franson, “Nonlinear transmission through a tapered fiber in rubidium vapor,” J. Opt. Soc. Am. B 26, 267–271 (2009).
[CrossRef]

M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
[CrossRef]

J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
[CrossRef]

2008 (3)

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008).
[CrossRef]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraan, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16, 18976 (2008).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

2007 (1)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

2006 (1)

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavlength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

1998 (1)

1992 (1)

T. A. Birk and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1989 (1)

G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989).
[CrossRef]

Abraham, E. R. L.

Adams, C. S.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

Benson, O.

Bhagwat, A. R.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraan, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16, 18976 (2008).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Birk, T. A.

T. A. Birk and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Camacho, R. M.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Chormaic, S. N.

M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[CrossRef]

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

Cornell, E. A.

Desiatov, B.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” Nat. Commun.4, 1548 (2013).

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

S. M. Hendrickson, T. B. Pittman, and J. D. Franson, “Nonlinear transmission through a tapered fiber in rubidium vapor,” J. Opt. Soc. Am. B 26, 267–271 (2009).
[CrossRef]

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Frawley, M. C.

M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[CrossRef]

Fujiwara, M.

Gaeta, A. L.

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraan, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16, 18976 (2008).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Ge, C.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008).
[CrossRef]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Goykhman, I.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” Nat. Commun.4, 1548 (2013).

Gregor, M.

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

Happer, W.

J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
[CrossRef]

Hawkins, A. R.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

S. M. Hendrickson, T. B. Pittman, and J. D. Franson, “Nonlinear transmission through a tapered fiber in rubidium vapor,” J. Opt. Soc. Am. B 26, 267–271 (2009).
[CrossRef]

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Hughes, I. G.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008).
[CrossRef]

Hulbert, J. F.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Hurd, K.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Jacobs, B. C.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Jau, Y.-Y.

J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
[CrossRef]

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Kishinevski, A.

J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
[CrossRef]

Krishnamurthy, S.

Kuhlicke, A.

Kumar, P.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shariar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19, 22874–22881 (2011).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

Levy, U.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” Nat. Commun.4, 1548 (2013).

Li, Y. W.

T. A. Birk and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Londero, P.

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraan, P. Londero, and A. L. Gaeta, “Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers,” Opt. Express 16, 18976 (2008).
[CrossRef]

Lou, J.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Lunt, E. J.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Ma, J.

J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
[CrossRef]

Mazur, E.

Milburn, G. J.

G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

Petru-Colan, A.

M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[CrossRef]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

S. M. Hendrickson, T. B. Pittman, and J. D. Franson, “Nonlinear transmission through a tapered fiber in rubidium vapor,” J. Opt. Soc. Am. B 26, 267–271 (2009).
[CrossRef]

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Rakich, P. T.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Reuter, C.

J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
[CrossRef]

Saha, K.

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

Salit, K.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shariar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19, 22874–22881 (2011).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

Salit, M.

Schmidt, H.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

Shariar, M. S.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, and M. S. Shariar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19, 22874–22881 (2011).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

Shaw, M. J.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Siddons, P.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008).
[CrossRef]

Slepkov, A. D.

Slpkov, A. D.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

Stern, L.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” Nat. Commun.4, 1548 (2013).

Takeuchi, S.

Tong, L.

Toubara, K.

Truong, V. G.

M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[CrossRef]

Venkataraan, V.

Venkataraman, V.

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[CrossRef]

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Wang, Y.

Weiler, C. N.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Wu, B.

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

Young, A. I.

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

Appl. Opt. (1)

J. Lightwave Technol. (1)

T. A. Birk and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B. (1)

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B. 41, 155004 (2008).
[CrossRef]

Nat. Photonics (2)

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1, 331–335 (2007).
[CrossRef]

B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control,” Nat. Photonics 4, 776–779 (2010).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef]

Opt. Commun. (1)

M. C. Frawley, A. Petru-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[CrossRef]

Opt. Express (5)

Phys. Rev. A (2)

K. Saha, V. Venkataraman, P. Londero, and A. L. Gaeta, “Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber,” Phys. Rev. A 83, 033833 (2011).
[CrossRef]

J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer, “Modification of glass cell walls by rubidium vapor,” Phys. Rev. A 79, 042905 (2009).
[CrossRef]

Phys. Rev. Lett. (7)

V. Venkataraman, K. Saha, P. Londero, and A. L. Gaeta, “Few-photon all-optical modulation in a photonic band-gap fiber,” Phys. Rev. Lett. 107, 193902 (2011).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic-band-gap fiber,” Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slpkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef]

G. J. Milburn, “Quantum optical Fredkin gate,” Phys. Rev. Lett. 62, 2124–2127 (1989).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shariar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[CrossRef]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105, 173602 (2010).
[CrossRef]

Other (3)

S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the classical Zeno effect,” Phys. Rev. A87, 023808 (2013).

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Evanescent light-matter interactions in atomic cladding wave guides,” Nat. Commun.4, 1548 (2013).

D. A. Steck, “Alkali D Line Data,” http://steck.us/alkalidata (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Comparison of two runs measuring transmission degradation for TOFs as Rb vapor is rapidly introduced into the system. The solid black line shows the absorption of an auxiliary resonant free-space probe beam; a substantial increase in Rb density occurs roughly 300 s into the run. The red curve shows the transmission (off resonance) of a TOF with the heating unit turned off; a significant loss of TOF transmission occurs with a time scale on the order of several minutes. A second run done in virtually identical conditions (blue curve) used a TOF with the heating element turned on (the dashed black line shows the resonant probe for this run). The TOF transmission degradation is seen to be much less severe with the heater turned on. The vertical axis is normalized so the average transmission values are 1 before the introduction of Rb vapor.

Fig. 2.
Fig. 2.

Overview of the TOF heating unit used to elevate the surface temperature of the TOF. Installation of the TOF involved three main steps: in Step ①, a freshly prepared TOF is mounted in an aluminum “canyon-shaped” heating fixture using UV curable epoxy. In Step ②, the heating fixture is placed on top of a ceramic heating element, and in Step ③ both are pressed tightly into an aluminum holding jig and secured using set screws. The holding jig is mounted on a 2.75 ConFlat (CF) feedthrough flange that allows the fiber to pass into and out of the vacuum system [19]. Power and thermocouple (tc) feedthroughs are used to control the TOF heating.

Fig. 3.
Fig. 3.

Overview of the experimental setup. In the optical part of the setup, the thin black lines represent single-mode fiber patch cords and couplers, while the thicker red arrows denote free-space beams. The TOF was installed inside the vacuum chamber with the external bare-fiber leads connected to the optical setup using two bare-fiber adapters (BFAs). One of the standard fiber patch cord connectors (labeled FC1) is identified due to its importance in the measurements. Additional details can be found in the main text.

Fig. 4.
Fig. 4.

Spectroscopy and ultralow-power saturation using TOFs in Rb vapor [3]. The upper panel in (a) shows the absorption spectrum (with dips labeled 1–4) of the Rb D2 line at 780 nm obtained in a standard reference cell, while the lower panel in (a) shows the corresponding absorption spectrum in the TOF signal for seven different TOF power levels (different color traces). (b) shows the TOF “dip 2” transmission values as a function of power; the data is fit by a simple nonlinear absorption model with a saturation power of only 72 nW. The main point of this data is to confirm that we have the kind of TOF in the Rb vapor system needed for low-power nonlinear optics experiments [35].

Fig. 5.
Fig. 5.

Detailed results of a run with the TOF heater unit turned off. The laser is swept back and forth across the Rb D2 line as Rb vapor is introduced into the system. In (a), the 2700 s run represents 540 consecutive 5 s sweeps through the Rb absorption dips; the gray trace is the FSP signal, and the red trace is the TOF (TOF-1) signal. (b)–(d) zoom in on individual scans through the Rb absorption lines at three points during the run. The TOF-1 transmission degrades to 1.5% of its initial value by the end of the run, but still shows strong Rb absorption dips [see (d)].

Fig. 6.
Fig. 6.

Analogous run to Fig. 5, but with the TOF heater turned on at a nominal value of 200°C (much higher than the vacuum chamber temperature of 60°C). In this case, the TOF (TOF-2) transmission degradation is much less severe, with a final TOF-2 transmission of 30% of its initial value. Comparing the TOF-2 dip depths in (d) with the TOF-1 dips in Fig. 5(d) suggests that the TOF heating unit can enable relatively high transmission while maintaining sufficient Rb density.

Fig. 7.
Fig. 7.

Detailed results of a third run performed with lower Rb density, and a higher TOF heating unit temperature (265°C). These results show the ability to preserve 100% TOF transmission (TOF-3) in relatively low Rb density. Comparing the TOF-3 data in (c) and (d) suggests the possibility of preserving high transmission in higher Rb densities by using an even hotter TOF heating unit.

Fig. 8.
Fig. 8.

(a) Data showing an otherwise successful run in which the TOF transmission (purple trace) suddenly drops to zero at t=511s. (b) A zoom-in shows that the complete transmission drop occurs on time scale of much less than 1 s, suggestive of a “fracture” in the TOF. The TOF data is normalized to 1 to highlight the transmission drop. These sudden transmission drops were the primary failure mechanism that prevented us from indefinitely using our heated TOFs in Rb vapor.

Metrics