Abstract

We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4μm in position and ±20μrad in angle.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Danzmann, “LISA—an ESA cornerstone mission for the detection and observation of gravitational waves,” Adv. Space Res. 32, 1233–1242 (2003).
    [CrossRef]
  2. G. D. Racca and P. W. McNamara, “The LISA pathfinder mission—tracing Einsteins geodesics in space,” Space Sci. Rev. 151, 159–181 (2010).
    [CrossRef]
  3. C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
    [CrossRef]
  4. E. D. Fitzsimons, “Techniques for precision interferometry in space,” Ph.D. thesis (University of Glasgow, 2010).
  5. D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
    [CrossRef]
  6. E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
    [CrossRef]

2013

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

2010

G. D. Racca and P. W. McNamara, “The LISA pathfinder mission—tracing Einsteins geodesics in space,” Space Sci. Rev. 151, 159–181 (2010).
[CrossRef]

2005

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

2003

K. Danzmann, “LISA—an ESA cornerstone mission for the detection and observation of gravitational waves,” Adv. Space Res. 32, 1233–1242 (2003).
[CrossRef]

Bogenstahl, J.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Bryant, J.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

Cagnoli, G.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Cruise, A. M.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

Danzmann, K.

K. Danzmann, “LISA—an ESA cornerstone mission for the detection and observation of gravitational waves,” Adv. Space Res. 32, 1233–1242 (2003).
[CrossRef]

Deshpande, A.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Dixon, G.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

Elliffe, E. J.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Fitzsimons, E. D.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

E. D. Fitzsimons, “Techniques for precision interferometry in space,” Ph.D. thesis (University of Glasgow, 2010).

Hough, J.

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Hoyland, D.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

Killow, C.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Killow, C. J.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

McNamara, P. W.

G. D. Racca and P. W. McNamara, “The LISA pathfinder mission—tracing Einsteins geodesics in space,” Space Sci. Rev. 151, 159–181 (2010).
[CrossRef]

Perreur-Lloyd, M.

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

Racca, G. D.

G. D. Racca and P. W. McNamara, “The LISA pathfinder mission—tracing Einsteins geodesics in space,” Space Sci. Rev. 151, 159–181 (2010).
[CrossRef]

Reid, S.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Robertson, D.

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Robertson, D. I.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

Rowan, S.

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Smith, D.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

Ward, H.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

C. J. Killow, E. D. Fitzsimons, J. Hough, M. Perreur-Lloyd, D. I. Robertson, S. Rowan, and H. Ward, “Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level,” Appl. Opt. 52, 177–181 (2013).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Adv. Space Res.

K. Danzmann, “LISA—an ESA cornerstone mission for the detection and observation of gravitational waves,” Adv. Space Res. 32, 1233–1242 (2003).
[CrossRef]

Appl. Opt.

Class. Quantum Grav.

D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013).
[CrossRef]

E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005).
[CrossRef]

Space Sci. Rev.

G. D. Racca and P. W. McNamara, “The LISA pathfinder mission—tracing Einsteins geodesics in space,” Space Sci. Rev. 151, 159–181 (2010).
[CrossRef]

Other

E. D. Fitzsimons, “Techniques for precision interferometry in space,” Ph.D. thesis (University of Glasgow, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagram illustrating the CQP measurement principle. There is only one incident beam, shown as a solid arrow, which is centered on both QPDs. Other beams that are centered on one of the QPDs are possible, shown as dashed lines, but they will always be off center on the other QPD.

Fig. 2.
Fig. 2.

Illustrated photograph of the CQP showing the beam path and the main components. The small cross shapes visible are the CMM measurement points.

Fig. 3.
Fig. 3.

Coordinate system of the CQP and the four calibration parameters required to define a beam relative to it: dy, dz, θx, and θz.

Fig. 4.
Fig. 4.

Plot showing the results of a check of the CQP accuracy. Here, two measurements were made with the CQP in its nominal orientation (0°) and two measurements in an orthogonal orientation (90°). For each measurement, two points are shown with an arrow indicating a direction between them. These points are spatially separated on the x axis by 300 mm, with the arrow indicating the propagation direction of the beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x=β[(A+C)(B+D)]/[A+B+C+D],
y=β[(A+B)(C+D)]/[A+B+C+D],

Metrics