Abstract

Despite a long history, the Raman scattering coefficient of water has so far only been measured with 10% uncertainty using a 95% confidence interval. In this paper, we present an experiment where we have achieved 1.5% uncertainty by using a low concentration of Rhodamine 6G in ethanol as a reference along with accurate consideration of polarization-related effects and the geometry of the experimental setup. We have found that the photon-to-photon Raman scattering coefficient of the OH stretching band of liquid water is (1.84±0.03)×104m1 when integrated over the spectral frequency range from 620 to 700 nm while the exciting laser operates at 532 nm. We have also accurately measured the depolarization ratio across this band.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef]
  2. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  3. T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
    [CrossRef]
  4. S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–403 (1984).
    [CrossRef]
  5. R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
    [CrossRef]
  6. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical-models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef]
  7. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000).
    [CrossRef]
  8. Y. Ge, H. R. Gordon, and K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
    [CrossRef]
  9. S. A. Corcelli and J. L. Skinner, “Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90°C,” J. Phys. Chem. A 109, 6154–6165 (2005).
    [CrossRef]
  10. H. Torii, “Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water,” J. Phys. Chem. A 110, 9469–9477 (2006).
    [CrossRef]
  11. B. M. Auer and J. L. Skinner, “IR and Raman spectra of liquid water: theory and interpretation,” J. Chem. Phys. 128, 224511 (2008).
    [CrossRef]
  12. V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
    [CrossRef]
  13. R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
    [CrossRef]
  14. R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005).
    [CrossRef]
  15. X. Zheng, W. Fu, S. Albin, K. L. Wise, A. Javey, and J. B. Cooper, “Self-referencing Raman probes for quantitative analysis,” Appl. Spectrosc. 55, 382–388 (2001).
    [CrossRef]
  16. C. Veas, and J. L. McHale, “Solvent effects on preresonance Raman scattering in TCNQ solutions,” J. Phys. Chem. 94, 2794–2800 (1990).
    [CrossRef]
  17. C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).
  18. G. W. Faris and R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997).
    [CrossRef]
  19. J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
    [CrossRef]
  20. R. A. Desiderio, “Application of the Raman scattering coefficient of water to calculations in marine optics,” Appl. Opt. 39, 1893–1894 (2000).
    [CrossRef]
  21. B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
    [CrossRef]
  22. W. K. Bischel, and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, 1983), pp. 181–187.
  23. R. L. McCreery, “Photometric standards for Raman spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).
  24. D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
    [CrossRef]
  25. C. von Grundherr, and M. Stockburger, “Quantum yield of resonance Raman scattering in the case of 1, 1, 14, 14, tetraphenyltetradecaheptaene,” Chem. Phys. Lett. 22, 253–256 (1973).
    [CrossRef]
  26. M. Fischer, and J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry,” Chem. Phys. Lett. 260, 115–118 (1996).
    [CrossRef]
  27. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (CRC/Chapman & Hall, 2003).
  28. M. Tanaka and R. J. Young, “Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
    [CrossRef]
  29. D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).
  30. S. P. S. Porto, “Angular dependence and depolarization ratio of the Raman effect,” J. Opt. Soc. Am. 56, 1585–1589 (1966).
    [CrossRef]
  31. T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995).
    [CrossRef]
  32. S. Inoue and W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces: II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. Cytol. 3, 831–838 (1957).
    [CrossRef]
  33. D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
    [CrossRef]
  34. A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
    [CrossRef]
  35. G. E. Walrafen and L. A. Blatz, “Weak Raman bands from water,” J. Chem. Phys. 59, 2646 (1973).
    [CrossRef]
  36. M. Moskovits and K. H. Michaelian, “Reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978).
    [CrossRef]
  37. Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
    [CrossRef]
  38. N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spektrosk. 38, 646–648 (1975).
  39. K. Cunningham and P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
    [CrossRef]
  40. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
    [CrossRef]
  41. F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
    [CrossRef]

2011

F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
[CrossRef]

2010

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

2008

B. M. Auer and J. L. Skinner, “IR and Raman spectra of liquid water: theory and interpretation,” J. Chem. Phys. 128, 224511 (2008).
[CrossRef]

2006

H. Torii, “Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water,” J. Phys. Chem. A 110, 9469–9477 (2006).
[CrossRef]

M. Tanaka and R. J. Young, “Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[CrossRef]

2005

R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005).
[CrossRef]

S. A. Corcelli and J. L. Skinner, “Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90°C,” J. Phys. Chem. A 109, 6154–6165 (2005).
[CrossRef]

2004

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

2003

Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[CrossRef]

2002

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

2001

2000

1998

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[CrossRef]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[CrossRef]

1997

1996

M. Fischer, and J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry,” Chem. Phys. Lett. 260, 115–118 (1996).
[CrossRef]

1995

T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995).
[CrossRef]

1993

1992

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

1990

C. Veas, and J. L. McHale, “Solvent effects on preresonance Raman scattering in TCNQ solutions,” J. Phys. Chem. 94, 2794–2800 (1990).
[CrossRef]

B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
[CrossRef]

1988

1987

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

1986

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

1984

S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

1978

M. Moskovits and K. H. Michaelian, “Reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978).
[CrossRef]

1975

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spektrosk. 38, 646–648 (1975).

1973

K. Cunningham and P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

C. von Grundherr, and M. Stockburger, “Quantum yield of resonance Raman scattering in the case of 1, 1, 14, 14, tetraphenyltetradecaheptaene,” Chem. Phys. Lett. 22, 253–256 (1973).
[CrossRef]

G. E. Walrafen and L. A. Blatz, “Weak Raman bands from water,” J. Chem. Phys. 59, 2646 (1973).
[CrossRef]

1966

1957

S. Inoue and W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces: II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. Cytol. 3, 831–838 (1957).
[CrossRef]

1928

C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).

Absanov, A. A.

F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
[CrossRef]

Albin, S.

Aliotta, F.

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

Ansmann, A.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Auer, B. M.

B. M. Auer and J. L. Skinner, “IR and Raman spectra of liquid water: theory and interpretation,” J. Chem. Phys. 128, 224511 (2008).
[CrossRef]

Bartlett, J. S.

Bellissent-Funel, M.-C.

V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
[CrossRef]

Ben-Amotz, D.

R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005).
[CrossRef]

Bischel, W. K.

W. K. Bischel, and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, 1983), pp. 181–187.

Black, G.

W. K. Bischel, and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, 1983), pp. 181–187.

Blatz, L. A.

G. E. Walrafen and L. A. Blatz, “Weak Raman bands from water,” J. Chem. Phys. 59, 2646 (1973).
[CrossRef]

Carey, D. M.

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[CrossRef]

Carlin, J. B.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (CRC/Chapman & Hall, 2003).

Cooper, J. B.

Copeland, R. A.

Corcelli, S. A.

S. A. Corcelli and J. L. Skinner, “Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90°C,” J. Phys. Chem. A 109, 6154–6165 (2005).
[CrossRef]

Crupi, V.

V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
[CrossRef]

Cunningham, K.

K. Cunningham and P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

De Santis, A.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

Demoz, B. B.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Desiderio, R. A.

Faris, G. W.

Favors, R. N.

R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005).
[CrossRef]

Feltz, W. F.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Ferrare, R. A.

Fischer, M.

M. Fischer, and J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry,” Chem. Phys. Lett. 260, 115–118 (1996).
[CrossRef]

Fisher, M. R.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

Flamant, C.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Fontanella, M. E.

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

Frattini, R.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

Fu, W.

Ge, Y.

Geerts, B.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Gelman, A.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (CRC/Chapman & Hall, 2003).

Gentili, B.

Georges, J.

M. Fischer, and J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry,” Chem. Phys. Lett. 260, 115–118 (1996).
[CrossRef]

Ghomi, M.

Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[CrossRef]

Gordon, H. R.

Hokmabadi, M. S.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

Hushvaktov, H. A.

F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
[CrossRef]

Hyde, W. L.

S. Inoue and W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces: II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. Cytol. 3, 831–838 (1957).
[CrossRef]

Inoue, S.

S. Inoue and W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces: II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. Cytol. 3, 831–838 (1957).
[CrossRef]

Javey, A.

Jiang, Y.

R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005).
[CrossRef]

Jin, Z.

Jouanne, M.

Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[CrossRef]

Jumabaev, A.

F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
[CrossRef]

Kattawar, G. W.

Kishino, M.

S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

Koch, S. E.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Korenowski, G. M.

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[CrossRef]

Lafait, J.

Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[CrossRef]

Lanmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Lemone, M. A.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Loethen, Y. L.

R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005).
[CrossRef]

Loisel, H.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).

Lyons, P. A.

K. Cunningham and P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

Magazu, S.

V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
[CrossRef]

Magde, D.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Majolino, D.

V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
[CrossRef]

Marshall, B. R.

Mazzacurati, V.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

McCreery, R. L.

R. L. McCreery, “Photometric standards for Raman spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).

McHale, J. L.

C. Veas, and J. L. McHale, “Solvent effects on preresonance Raman scattering in TCNQ solutions,” J. Phys. Chem. 94, 2794–2800 (1990).
[CrossRef]

Melfi, S. H.

Michaelian, K. H.

M. Moskovits and K. H. Michaelian, “Reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978).
[CrossRef]

Michaels, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Migliardo, P.

V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
[CrossRef]

Mobley, C. D.

Moerner, W. E.

T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995).
[CrossRef]

Moore, J. A.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Morel, A.

Morhange, J. F.

Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[CrossRef]

Moskovits, M.

M. Moskovits and K. H. Michaelian, “Reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978).
[CrossRef]

Nardone, M.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

Okami, N.

S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

Palm, V.

T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995).
[CrossRef]

Parsons, D. B.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Plakhotnik, T.

T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995).
[CrossRef]

Pochylski, M.

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

Ponterio, R. C.

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

Porto, S. P. S.

Raman, C. V.

C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).

Reinersman, P.

Ricci, M. A.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Romanov, N. P.

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spektrosk. 38, 646–648 (1975).

Rubin, D. B.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (CRC/Chapman & Hall, 2003).

Ruocco, G.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

Saija, F.

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

Sampoli, M.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

Sathyendranath, S.

Seybold, P. G.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Shuklin, V. S.

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spektrosk. 38, 646–648 (1975).

Skinner, J. L.

B. M. Auer and J. L. Skinner, “IR and Raman spectra of liquid water: theory and interpretation,” J. Chem. Phys. 128, 224511 (2008).
[CrossRef]

S. A. Corcelli and J. L. Skinner, “Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90°C,” J. Phys. Chem. A 109, 6154–6165 (2005).
[CrossRef]

Smith, R. C.

Stamnes, K.

Stavn, R. H.

Stern, H. S.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (CRC/Chapman & Hall, 2003).

Stockburger, M.

C. von Grundherr, and M. Stockburger, “Quantum yield of resonance Raman scattering in the case of 1, 1, 14, 14, tetraphenyltetradecaheptaene,” Chem. Phys. Lett. 22, 253–256 (1973).
[CrossRef]

Stramski, D.

Sugihara, S.

S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

Tanaka, M.

M. Tanaka and R. J. Young, “Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[CrossRef]

Torii, H.

H. Torii, “Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water,” J. Phys. Chem. A 110, 9469–9477 (2006).
[CrossRef]

Tukhvatullin, F. H.

F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
[CrossRef]

Usarov, A.

F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
[CrossRef]

Vallee, Ph.

Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[CrossRef]

Vasi, C.

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

Veas, C.

C. Veas, and J. L. McHale, “Solvent effects on preresonance Raman scattering in TCNQ solutions,” J. Phys. Chem. 94, 2794–2800 (1990).
[CrossRef]

Venuti, V.

V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
[CrossRef]

Vodacek, A.

von Grundherr, C.

C. von Grundherr, and M. Stockburger, “Quantum yield of resonance Raman scattering in the case of 1, 1, 14, 14, tetraphenyltetradecaheptaene,” Chem. Phys. Lett. 22, 253–256 (1973).
[CrossRef]

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Voss, K. J.

Walrafen, G. E.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

G. E. Walrafen and L. A. Blatz, “Weak Raman bands from water,” J. Chem. Phys. 59, 2646 (1973).
[CrossRef]

Wandinger, U.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Wang, J.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Weckwerth, T. M.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Weidemann, A. D.

Weitkamp, C.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Whiteman, D. N.

Wild, U. P.

T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995).
[CrossRef]

Wise, K. L.

Wong, R.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Yang, W. H.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

Young, R. J.

M. Tanaka and R. J. Young, “Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[CrossRef]

Zheng, X.

Appl. Opt.

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef]

R. H. Stavn and A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical-models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef]

H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39, 3001–3011 (2000).
[CrossRef]

Y. Ge, H. R. Gordon, and K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
[CrossRef]

G. W. Faris and R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997).
[CrossRef]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[CrossRef]

R. A. Desiderio, “Application of the Raman scattering coefficient of water to calculations in marine optics,” Appl. Opt. 39, 1893–1894 (2000).
[CrossRef]

B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
[CrossRef]

Appl. Phys. B

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lanmann, and W. Michaels, “Combined Raman elastic-backsctatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Appl. Spectrosc.

Bull. Am. Meteorol. Soc.

T. M. Weckwerth, D. B. Parsons, S. E. Koch, J. A. Moore, M. A. Lemone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz, “An overview of the International H2O Project (IHOP 2002) and some preliminary highlights,” Bull. Am. Meteorol. Soc. 85, 1253–1277 (2004).
[CrossRef]

Chem. Phys. Lett.

C. von Grundherr, and M. Stockburger, “Quantum yield of resonance Raman scattering in the case of 1, 1, 14, 14, tetraphenyltetradecaheptaene,” Chem. Phys. Lett. 22, 253–256 (1973).
[CrossRef]

M. Fischer, and J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry,” Chem. Phys. Lett. 260, 115–118 (1996).
[CrossRef]

Indian J. Phys.

C. V. Raman, “A new radiation,” Indian J. Phys. 2, 387–398 (1928).

J. Biophys. Biochem. Cytol.

S. Inoue and W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces: II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. Cytol. 3, 831–838 (1957).
[CrossRef]

J. Chem. Phys.

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[CrossRef]

G. E. Walrafen and L. A. Blatz, “Weak Raman bands from water,” J. Chem. Phys. 59, 2646 (1973).
[CrossRef]

M. Moskovits and K. H. Michaelian, “Reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978).
[CrossRef]

B. M. Auer and J. L. Skinner, “IR and Raman spectra of liquid water: theory and interpretation,” J. Chem. Phys. 128, 224511 (2008).
[CrossRef]

K. Cunningham and P. A. Lyons, “Depolarization ratio studies on liquid water,” J. Chem. Phys. 59, 2132–2139 (1973).
[CrossRef]

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low and high frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

J. Mater. Sci.

M. Tanaka and R. J. Young, “Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” J. Mater. Sci. 41, 963–991 (2006).
[CrossRef]

J. Mol. Liq.

F. H. Tukhvatullin, A. Jumabaev, H. A. Hushvaktov, A. A. Absanov, and A. Usarov, “Polarized components of Raman spectra of OH vibrations in liquid water,” J. Mol. Liq. 160, 88–93 (2011).
[CrossRef]

J. Mol. Struct.

Ph. Vallee, J. Lafait, M. Ghomi, M. Jouanne, and J. F. Morhange, “Raman scattering of water and photoluminescence of pollutants arising from solid-water interaction,” J. Mol. Struct. 651–653, 371–379 (2003).
[CrossRef]

J. Oceanogr. Soc. Jpn.

S. Sugihara, M. Kishino, and N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–403 (1984).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem.

C. Veas, and J. L. McHale, “Solvent effects on preresonance Raman scattering in TCNQ solutions,” J. Phys. Chem. 94, 2794–2800 (1990).
[CrossRef]

J. Phys. Chem. A

S. A. Corcelli and J. L. Skinner, “Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90°C,” J. Phys. Chem. A 109, 6154–6165 (2005).
[CrossRef]

H. Torii, “Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water,” J. Phys. Chem. A 110, 9469–9477 (2006).
[CrossRef]

J. Phys. Condens. Matter

V. Crupi, S. Magazu, D. Majolino, P. Migliardo, V. Venuti, and M.-C. Bellissent-Funel, “Confinement influence in liquid water studied by Raman and neutron scattering,” J. Phys. Condens. Matter 12, 3625–3630 (2000).
[CrossRef]

J. Phys. D

R. C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M. E. Fontanella, and F. Saija, “Raman scattering measurements on a floating water bridge,” J. Phys. D 43, 175405 (2010).
[CrossRef]

Mol. Phys.

A. De Santis, R. Frattini, M. Sampoli, V. Mazzacurati, M. Nardone, M. A. Ricci, and G. Ruocco, “Raman spectra of water in the translational and librational regions. I. Study of the depolarization ratio,” Mol. Phys. 61, 1199–1212 (1987).
[CrossRef]

Opt. Commun.

T. Plakhotnik, W. E. Moerner, V. Palm, and U. P. Wild, “Single molecule spectroscopy: maximum emission rate and saturation intensity,” Opt. Commun. 114, 83–88 (1995).
[CrossRef]

Opt. Spektrosk.

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spektrosk. 38, 646–648 (1975).

Photochem. Photobiol.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Rev. Sci. Instrum.

R. N. Favors, Y. Jiang, Y. L. Loethen, and D. Ben-Amotz, “External Raman standard for absolute intensity and concentration measurements,” Rev. Sci. Instrum. 76, 033108 (2005).
[CrossRef]

Other

W. K. Bischel, and G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, and H. Pummer, eds. (American Institute of Physics, 1983), pp. 181–187.

R. L. McCreery, “Photometric standards for Raman spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).

D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd ed. (CRC/Chapman & Hall, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Panel (A) shows the experimental apparatus for Raman scattering and R6G luminescence measurements. Panel (B) gives an example of data acquired with this apparatus. Several spectra of R6G shown in this figure are very close to each other. For measuring each spectrum, a new solution of R6G with the same intended concentration had been prepared. The figure demonstrates the reproducibility of the sample preparation. The relative standard deviation of this set of measurements (the integrals under the curves) is 0.8%.

Fig. 2.
Fig. 2.

Panel (A) shows differential Raman scattering coefficient of water as defined in Eq. (11). We show this quantity since it has no dependence on the geometry of the optical collection system. This curve equals the spectrum measured when the scattered light is collected with high numerical aperture (NA1) optics. The S-shaped line in the middle shows the wavelength-dependent depolarization ratio. Panel (B) shows the low intensity region for better visibility of weak lines and covers a wider range of wavelengths. The units of the vertical scale are the same as in panel (A). All features (except for the several sharp spikes caused by noise in the depolarization ratio factor) are attributed to Raman scattering in water. The dashed line shows the Gaussian fit to the band centered at 674 nm. Stokes detuning from the laser frequency is shown at the bottom of the figure for convenience of the reader. A thin dashed-dotted line shows the linear fit subtracted from the spectra to correct for a small gradient in the background.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

F(l)(d)=F(l)(0)exp(ϵd),
Fm(e)(d)=F(l)(0)1exp(ϵd)ϵϕmbmF(l)(0)bmϕmd,
Pm(e)(d)=P(l)(0)1exp(ϵd)ϵϕmbm.
Fi(e)Fj(e)=biϕibjϕj.
Π=132(1615cos(θ)cos(3θ)),
Π=116(cos(3θ)9cos(θ)+8).
R=SVV+SHHSVH+SHV=DV(Πp+Πp/2)+DH(Πp+Πp/2)DH(Πp+Πp/2)+DV(Πp+Πp/2)=2Π+Πρ2Πρ+Πρ,
ρ(λ)=2Π(2Π+Π)RΠ.
R=WSHHWSVH+SVVWSHVWSVV+SVH.
T=4n1n2(n1+n2)2,
βW(λ)=bR{L(SVN+SHN)(1+2ρ)ϕT2(Π+ρΠ+ρΠ)}W{L(SVN+SHN)(1+2ρ)ϕT2(Π+ρΠ+ρΠ)dλ}R,
ρ¯pdλpdλ=ρβ/(1+2ρ)dλβ/(1+2ρ)dλ.
(dσdΩ)90°=b3+3ρ¯8πN(1+2ρ¯),

Metrics