Abstract

Three recipes are presented to make tissue constituent-equivalent phantoms of water and lipids. Different approaches to prepare the emulsion are proposed. Nature phantoms are made using no emulsifying agent, but just a professional disperser; instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30% to 70% by mass were tested. A broadband time-resolved diffuse optical spectroscopy system was used to characterize the phantoms in terms of optical properties and composition. For some water/lipid ratios the emulsion fails or the phantom has limited lifetime, but in most cases the recipes provide phantoms with a high degree of homogeneity [coefficient of variation (CV) of 4.6% and 1.5% for the absorption and reduced scattering coefficient, respectively] and good reproducibility (CV of 8.3% and 12.4% for absorption and reduced scattering coefficient, respectively).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hwang, J. C. Ramella-Roman, and R. Nordstrom, “Introduction: feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices,” Biomed. Opt. Express 3, 1399–1403 (2012).
    [CrossRef]
  2. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef]
  3. M. O’ Leary, D. Boas, B. Chance, and A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  4. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
    [CrossRef]
  5. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [CrossRef]
  6. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).
  7. R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
    [CrossRef]
  8. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
    [CrossRef]
  9. S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
    [CrossRef]
  10. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
    [CrossRef]
  11. P. A. Hardy, R. S. Hinks, and J. A. Tkach, “Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique,” J. Magn. Reson. Imaging 5, 181–185(1995).
    [CrossRef]
  12. C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
    [CrossRef]
  13. H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
    [CrossRef]
  14. E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
    [CrossRef]
  15. D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
    [CrossRef]
  16. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
    [CrossRef]
  17. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
    [CrossRef]
  18. H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
    [CrossRef]
  19. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef]
  20. X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12, 934–947 (2005).
    [CrossRef]
  21. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
    [CrossRef]
  22. C. Byrne, “Studying mammographic density: implications for understanding breast cancer,” J. Natl. Cancer Inst. 89, 531 (1997).
  23. V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomark. Prev. 15, 1159 (2006).
    [CrossRef]
  24. F. Martelli, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010).
  25. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef]
  26. A. M. K. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37, 1256–1267 (1998).
    [CrossRef]
  27. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006).
    [CrossRef]
  28. A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63, 48–56 (2009).
    [CrossRef]
  29. UCL, “Specific extinction spectra of tissue chromophores,” http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm .

2012

2010

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

2009

2008

C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
[CrossRef]

2007

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
[CrossRef]

2006

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomark. Prev. 15, 1159 (2006).
[CrossRef]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006).
[CrossRef]

2005

X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12, 934–947 (2005).
[CrossRef]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

2004

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
[CrossRef]

2003

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef]

2002

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

2000

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

1998

1997

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
[CrossRef]

C. Byrne, “Studying mammographic density: implications for understanding breast cancer,” J. Natl. Cancer Inst. 89, 531 (1997).

1996

S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
[CrossRef]

1995

1991

H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
[CrossRef]

Abbate, F.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

Andersson-Engels, S.

Arpaia, F.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

Balestreri, N.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

Bassi, A.

Bernard, C. P.

C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
[CrossRef]

Bigio, I. J.

Boas, D.

Boyd, N.

S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
[CrossRef]

Boyer, J.

Bronskill, M.

S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
[CrossRef]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Byng, J.

S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
[CrossRef]

Byrne, C.

C. Byrne, “Studying mammographic density: implications for understanding breast cancer,” J. Natl. Cancer Inst. 89, 531 (1997).

Cassano, E.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Cerussi, A. E.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Chance, B.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

M. O’ Leary, D. Boas, B. Chance, and A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

Chiou, G.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Choe, R.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

Chu, Y.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Comelli, D.

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63, 48–56 (2009).
[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
[CrossRef]

Contini, D.

Cubeddu, R.

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63, 48–56 (2009).
[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
[CrossRef]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006).
[CrossRef]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
[CrossRef]

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

D’Andrea, C.

Danesini, G.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

Dehghani, H.

Delpy, D. T.

Deng, C.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Desjardins, A. E.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

dos Santos Silva, I.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomark. Prev. 15, 1159 (2006).
[CrossRef]

Durduran, T.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

Durkin, A. J.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Eggert, J. A.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Fajardo, L. L.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

Fantini, S.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
[CrossRef]

Farina, A.

Firbank, M.

Fuselier, T.

Gebauer, B.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Giusto, A.

Graham, S.

S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
[CrossRef]

Grosenick, D.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Gulsen, G.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Hall, D. J.

Hardy, P. A.

P. A. Hardy, R. S. Hinks, and J. A. Tkach, “Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique,” J. Magn. Reson. Imaging 5, 181–185(1995).
[CrossRef]

Hebden, J. C.

Heffer, E.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
[CrossRef]

Hendriks, B. H. W.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

Hinks, R. S.

P. A. Hardy, R. S. Hinks, and J. A. Tkach, “Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique,” J. Magn. Reson. Imaging 5, 181–185(1995).
[CrossRef]

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

Hwang, J.

Iftimia, N. V.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

Intes, X.

X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12, 934–947 (2005).
[CrossRef]

Jiang, H.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

Johnson, T. M.

Klove, K. L.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

Langton, C. M.

C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
[CrossRef]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Liney, G. P.

C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
[CrossRef]

Liu, D. L.

Manton, D. J.

C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
[CrossRef]

Martelli, F.

F. Martelli, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010).

McCormack, V. A.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomark. Prev. 15, 1159 (2006).
[CrossRef]

Menna, S.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

Merritt, S.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Moes, C. J.

H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
[CrossRef]

Moesta, K. T.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Moller, M.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Mourant, J. R.

Mucke, J.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Nachabé, R.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

Nalcioglu, O.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Nilsson, A. M. K.

Nordstrom, R.

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

O’ Leary, M.

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

Paulsen, K. D.

Pera, V.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
[CrossRef]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Pifferi, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63, 48–56 (2009).
[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
[CrossRef]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
[CrossRef]

Pogue, B. W.

Poplack, S. P.

Prahl, S. A.

H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
[CrossRef]

Quarto, G.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

Ramella-Roman, J. C.

Rinneberg, H.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Schlag, P. M.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Schutz, O.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
[CrossRef]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Siebold, H.

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
[CrossRef]

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

Spinelli, L.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63, 48–56 (2009).
[CrossRef]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006).
[CrossRef]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

Sterenborg, H. J. C. M.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

Stroszczynski, C.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Sturesson, C.

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Swartling, J.

Taroni, P.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass effects in time-resolved diffuse spectroscopy,” Appl. Spectrosc. 63, 48–56 (2009).
[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
[CrossRef]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
[CrossRef]

Tkach, J. A.

P. A. Hardy, R. S. Hinks, and J. A. Tkach, “Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique,” J. Magn. Reson. Imaging 5, 181–185(1995).
[CrossRef]

Torricelli, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
[CrossRef]

C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006).
[CrossRef]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
[CrossRef]

Tromberg, B. J.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Turnbull, L. W.

C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
[CrossRef]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
[CrossRef]

van der Mark, M. B.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

van der Voort, M.

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

Van Gemert, M. J.

H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
[CrossRef]

Van Marle, J.

H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
[CrossRef]

Van Staveren, H. J.

H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
[CrossRef]

Villa, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

Wabnitz, H.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Wassermann, B.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

Xu, Y.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

Yaffe, M.

S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
[CrossRef]

Yodh, A.

Yodh, A. G.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

Acad. Radiol.

H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, and K. L. Klove, “Near-infrared optical imaging of the breast with model-based reconstruction,” Acad. Radiol. 9, 186–194(2002).
[CrossRef]

X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12, 934–947 (2005).
[CrossRef]

Appl. Opt

H. J. Van Staveren, C. J. Moes, J. Van Marle, S. A. Prahl, and M. J. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt 30, 4507–4514 (1991).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Biomed. Opt. Express

Br. J. Cancer

S. Graham, M. Bronskill, J. Byng, M. Yaffe, and N. Boyd, “Quantitative correlation of breast tissue parameters using magnetic resonance and X-ray mammography,” Br. J. Cancer 73, 162 (1996).
[CrossRef]

Cancer Epidemiol. Biomark. Prev.

V. A. McCormack and I. dos Santos Silva, “Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis,” Cancer Epidemiol. Biomark. Prev. 15, 1159 (2006).
[CrossRef]

J. Biomed. Opt.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

R. Nachabé, B. H. W. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. C. M. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1600 nm,” J. Biomed. Opt. 15, 037015 (2010).
[CrossRef]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, and E. Cassano, and others, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt. 15, 060501 (2010).
[CrossRef]

E. Heffer, V. Pera, O. Schutz, H. Siebold, and S. Fantini, “Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images,” J. Biomed. Opt. 9, 1152–1160 (2004).
[CrossRef]

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications,” J. Biomed. Opt. 12, 014021 (2007).
[CrossRef]

J. Magn. Reson. Imaging

P. A. Hardy, R. S. Hinks, and J. A. Tkach, “Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique,” J. Magn. Reson. Imaging 5, 181–185(1995).
[CrossRef]

C. P. Bernard, G. P. Liney, D. J. Manton, L. W. Turnbull, and C. M. Langton, “Comparison of fat quantification methods: a phantom study at 3.0 T,” J. Magn. Reson. Imaging 27, 192–197 (2008).
[CrossRef]

J. Natl. Cancer Inst.

C. Byrne, “Studying mammographic density: implications for understanding breast cancer,” J. Natl. Cancer Inst. 89, 531 (1997).

Med. Phys.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).
[CrossRef]

Neoplasia

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971 (1997).
[CrossRef]

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50, 2429–2449 (2005).
[CrossRef]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50, 2469–2488 (2005).
[CrossRef]

Technol. Cancer Res. Treat.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2, 563–569 (2003).

Other

F. Martelli, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010).

UCL, “Specific extinction spectra of tissue chromophores,” http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the system setup. PMT, photomultiplier tube; TCSPC, time-correlated single photon counting.

Fig. 2.
Fig. 2.

Absorption spectra of Triton phantoms with different water-to-lipid ratios. Black and gray solid lines show the lipid and water extinction coefficient, respectively.

Fig. 3.
Fig. 3.

Absorption spectra of phantom B for the three recipes.

Fig. 4.
Fig. 4.

Reduced scattering spectra of phantom B for the three recipes.

Fig. 5.
Fig. 5.

Average absorption spectrum and standard deviation of measurements on three lard samples of different brands.

Fig. 6.
Fig. 6.

Experimental lipid (a) and water (b) mass versus true mass for the three recipes.

Tables (5)

Tables Icon

Table 1. Amount of Water, Lipids, and Agar or Triton X-100 (Depending on the Recipe) Used for the Preparation of Phantoms

Tables Icon

Table 2. Feasible Phantoms for the Three Recipesa

Tables Icon

Table 3. Reduced Scattering Coefficient at 600 nm of Phantom B with Different Percentage of Triton X-100

Tables Icon

Table 4. Average Values and Standard Deviation of the Absorption and Reduced Scattering Coefficients for the Three Measurement Points of Phantom B for the Three Recipes at 750 nm

Tables Icon

Table 5. Average Values and Standard Deviation of Absorption and Reduced Scattering Coefficients of Measurements of Three Different Phantom B Made at Different Times for the Three Recipes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T(x,y,t)=12(4πDυ)3/2t5/2exp(μaυt)×l=[exp((xx1l)24Dυt)exp((xx2l)24Dυt)]×m=[exp((yy1m)24Dυt)exp((yy2m)24Dυt)]×n=[(lzz1n)exp((lzz1n)24Dυt)(lzz2n)exp((lzz2n)24Dυt)],
{x1l=2lLx+4lze+xsx2l=2lLx+(4l2)zexsy1l=2mLy+4mze+ysy2l=2mLy+(4m2)zeysz1l=2nLz+4nze+zsz2l=2nLz+(4n2)zezsze=2ADl,m,n=0,±1,±2,,±.
μa(λ)=iCiεi.
μs=a(λλ0)b,

Metrics