Abstract

The performance of three optics-based interference cancellation systems are compared and contrasted with each other, and with traditional electronic techniques for interference cancellation. The comparison is based on a set of common performance metrics that we have developed for this purpose. It is shown that thorough evaluation of our optical approaches takes into account the traditional notions of depth of cancellation and dynamic range, along with notions of link loss and uniformity of cancellation. Our evaluation shows that our use of optical components affords performance that surpasses traditional electronic approaches, and that the optimal choice for an optical interference canceller requires taking into account the performance metrics discussed in this paper.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Seeds and K. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [CrossRef]
  2. J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45, 402–408 (2009).
    [CrossRef]
  3. J. Bruno, “Electro-optic cosite interference mitigation,” Proc. SPIE 7607, 76071A (2010).
    [CrossRef]
  4. J. Suarez and P. Prucnal, “Characterization of the instantaneous bandwidth of counter-phase optical interference cancellation,” IEEE Photon. Technol. Lett. (2009).
  5. J. Suarez and P. Prucnal, “System-level performance and characterization of counter-phase optical interference cancellation,” J. Lightwave Technol. 28, 1821–1831 (2010).
    [CrossRef]
  6. F. J. Kub, E. W. Justh, and B. Lippard, “Self-calibrating hybrid analog CMOS co-site interference canceller,” in MILCOM Proceedings 1999 (IEEE, 1999), Vol. 2, pp. 1051–1054.
  7. F. J. Kub and E. W. Justh, “Analog CMOS implementation of high frequency least-mean-square error learning circuit,” IEEE J. Solid-State Circuits 30, 1391–1398 (1995).
    [CrossRef]
  8. Quellan QHx220 datasheet, http://www.anglia-m2m.com/GPS/intersil/QHx220.pdf .
  9. M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.
  10. R. Cardinali, F. Colone, C. Ferretti, and P. Lombardo, “Comparison of clutter and multipath cancellation techniques for passive radar,” in 2007 IEEE Conference on Radar (IEEE, 2007), pp. 469–474.
  11. B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, 1985).
  12. http://www.smsmatrix.com/front/mob_doc/tech-1/chaptr05/cdma/rake.html .
  13. G. Bottomley, T. Ottosson, and Y.-P. E. Wang, “A generalized RAKE receiver for interference suppression,” IEEE J. Sel. Areas Commun. 18, 1536–1545 (2000).
    [CrossRef]
  14. D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Low complexity rake receivers in ultra-wideband channels,” IEEE Trans. Wireless Commun. 6, 1265–1275 (2007).
    [CrossRef]
  15. N. Boubaker, and K. B. Letaief, “A low complexity MMSE-RAKE receiver in a realistic UWB channel and in the presence of NBI,” in IEEE Wireless Communications and Networking (IEEE, 2003), Vol. 1, pp. 233–237.
  16. A. Sonnenschein and W. K. Hutchinson, “A design for an electro-optic implementation of a wideband nulling system,” in MILCOM 1990 (IEEE, 1990), Vol. 2, pp. 742–748.
  17. L. M. Johnson, H. V. Roussell, and G. E. Betts, “Interferometric modulators for an adaptive nulling system,” Proc. SPIE 1790, 50–54 (1993).
    [CrossRef]
  18. M. J. LaGasse, “Cosite interference rejection system using an optical approach,” U.S. patent 7,231,151 (12June2007).
  19. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
    [CrossRef]
  20. G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
    [CrossRef]
  21. Fiber-Span, application note, “Spurious free dynamic range,” http://www.fiber-span.com/Application_Note_Spurious%20Free%20Dynamic%20Range.pdf .
  22. Maxim Integrated, application note, “Three methods of noise figure measurement.” http://www.maximintegrated.com/app-notes/index.mvp/id/2875 .

2010

2009

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45, 402–408 (2009).
[CrossRef]

2007

D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Low complexity rake receivers in ultra-wideband channels,” IEEE Trans. Wireless Commun. 6, 1265–1275 (2007).
[CrossRef]

2006

2000

G. Bottomley, T. Ottosson, and Y.-P. E. Wang, “A generalized RAKE receiver for interference suppression,” IEEE J. Sel. Areas Commun. 18, 1536–1545 (2000).
[CrossRef]

1995

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

F. J. Kub and E. W. Justh, “Analog CMOS implementation of high frequency least-mean-square error learning circuit,” IEEE J. Solid-State Circuits 30, 1391–1398 (1995).
[CrossRef]

1993

L. M. Johnson, H. V. Roussell, and G. E. Betts, “Interferometric modulators for an adaptive nulling system,” Proc. SPIE 1790, 50–54 (1993).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Betts, G. E.

L. M. Johnson, H. V. Roussell, and G. E. Betts, “Interferometric modulators for an adaptive nulling system,” Proc. SPIE 1790, 50–54 (1993).
[CrossRef]

Bharadia, D.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Bottomley, G.

G. Bottomley, T. Ottosson, and Y.-P. E. Wang, “A generalized RAKE receiver for interference suppression,” IEEE J. Sel. Areas Commun. 18, 1536–1545 (2000).
[CrossRef]

Boubaker, N.

N. Boubaker, and K. B. Letaief, “A low complexity MMSE-RAKE receiver in a realistic UWB channel and in the presence of NBI,” in IEEE Wireless Communications and Networking (IEEE, 2003), Vol. 1, pp. 233–237.

Bruno, J.

J. Bruno, “Electro-optic cosite interference mitigation,” Proc. SPIE 7607, 76071A (2010).
[CrossRef]

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Cardinali, R.

R. Cardinali, F. Colone, C. Ferretti, and P. Lombardo, “Comparison of clutter and multipath cancellation techniques for passive radar,” in 2007 IEEE Conference on Radar (IEEE, 2007), pp. 469–474.

Cassioli, D.

D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Low complexity rake receivers in ultra-wideband channels,” IEEE Trans. Wireless Commun. 6, 1265–1275 (2007).
[CrossRef]

Choi, J. I.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Colone, F.

R. Cardinali, F. Colone, C. Ferretti, and P. Lombardo, “Comparison of clutter and multipath cancellation techniques for passive radar,” in 2007 IEEE Conference on Radar (IEEE, 2007), pp. 469–474.

Esman, R. D.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Ferretti, C.

R. Cardinali, F. Colone, C. Ferretti, and P. Lombardo, “Comparison of clutter and multipath cancellation techniques for passive radar,” in 2007 IEEE Conference on Radar (IEEE, 2007), pp. 469–474.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Howerton, M. M.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Hutchinson, W. K.

A. Sonnenschein and W. K. Hutchinson, “A design for an electro-optic implementation of a wideband nulling system,” in MILCOM 1990 (IEEE, 1990), Vol. 2, pp. 742–748.

Jain, M.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Johnson, L. M.

L. M. Johnson, H. V. Roussell, and G. E. Betts, “Interferometric modulators for an adaptive nulling system,” Proc. SPIE 1790, 50–54 (1993).
[CrossRef]

Justh, E. W.

F. J. Kub and E. W. Justh, “Analog CMOS implementation of high frequency least-mean-square error learning circuit,” IEEE J. Solid-State Circuits 30, 1391–1398 (1995).
[CrossRef]

F. J. Kub, E. W. Justh, and B. Lippard, “Self-calibrating hybrid analog CMOS co-site interference canceller,” in MILCOM Proceedings 1999 (IEEE, 1999), Vol. 2, pp. 1051–1054.

Katti, S.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Kim, T. M.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Kravtsov, K.

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45, 402–408 (2009).
[CrossRef]

Kub, F. J.

F. J. Kub and E. W. Justh, “Analog CMOS implementation of high frequency least-mean-square error learning circuit,” IEEE J. Solid-State Circuits 30, 1391–1398 (1995).
[CrossRef]

F. J. Kub, E. W. Justh, and B. Lippard, “Self-calibrating hybrid analog CMOS co-site interference canceller,” in MILCOM Proceedings 1999 (IEEE, 1999), Vol. 2, pp. 1051–1054.

LaGasse, M. J.

M. J. LaGasse, “Cosite interference rejection system using an optical approach,” U.S. patent 7,231,151 (12June2007).

Letaief, K. B.

N. Boubaker, and K. B. Letaief, “A low complexity MMSE-RAKE receiver in a realistic UWB channel and in the presence of NBI,” in IEEE Wireless Communications and Networking (IEEE, 2003), Vol. 1, pp. 233–237.

Levis, P.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Lippard, B.

F. J. Kub, E. W. Justh, and B. Lippard, “Self-calibrating hybrid analog CMOS co-site interference canceller,” in MILCOM Proceedings 1999 (IEEE, 1999), Vol. 2, pp. 1051–1054.

Lombardo, P.

R. Cardinali, F. Colone, C. Ferretti, and P. Lombardo, “Comparison of clutter and multipath cancellation techniques for passive radar,” in 2007 IEEE Conference on Radar (IEEE, 2007), pp. 469–474.

Moeller, R. P.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Molisch, A. F.

D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Low complexity rake receivers in ultra-wideband channels,” IEEE Trans. Wireless Commun. 6, 1265–1275 (2007).
[CrossRef]

Ottosson, T.

G. Bottomley, T. Ottosson, and Y.-P. E. Wang, “A generalized RAKE receiver for interference suppression,” IEEE J. Sel. Areas Commun. 18, 1536–1545 (2000).
[CrossRef]

Prucnal, P.

J. Suarez and P. Prucnal, “System-level performance and characterization of counter-phase optical interference cancellation,” J. Lightwave Technol. 28, 1821–1831 (2010).
[CrossRef]

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45, 402–408 (2009).
[CrossRef]

J. Suarez and P. Prucnal, “Characterization of the instantaneous bandwidth of counter-phase optical interference cancellation,” IEEE Photon. Technol. Lett. (2009).

Roussell, H. V.

L. M. Johnson, H. V. Roussell, and G. E. Betts, “Interferometric modulators for an adaptive nulling system,” Proc. SPIE 1790, 50–54 (1993).
[CrossRef]

Seeds, A.

Seth, S.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Sinha, P.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Sonnenschein, A.

A. Sonnenschein and W. K. Hutchinson, “A design for an electro-optic implementation of a wideband nulling system,” in MILCOM 1990 (IEEE, 1990), Vol. 2, pp. 742–748.

Srinivasan, K.

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

Stearns, S. D.

B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, 1985).

Suarez, J.

J. Suarez and P. Prucnal, “System-level performance and characterization of counter-phase optical interference cancellation,” J. Lightwave Technol. 28, 1821–1831 (2010).
[CrossRef]

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45, 402–408 (2009).
[CrossRef]

J. Suarez and P. Prucnal, “Characterization of the instantaneous bandwidth of counter-phase optical interference cancellation,” IEEE Photon. Technol. Lett. (2009).

Vatalaro, F.

D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Low complexity rake receivers in ultra-wideband channels,” IEEE Trans. Wireless Commun. 6, 1265–1275 (2007).
[CrossRef]

Wang, Y.-P. E.

G. Bottomley, T. Ottosson, and Y.-P. E. Wang, “A generalized RAKE receiver for interference suppression,” IEEE J. Sel. Areas Commun. 18, 1536–1545 (2000).
[CrossRef]

Widrow, B.

B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, 1985).

Williams, K.

Williams, K. J.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Win, M. Z.

D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Low complexity rake receivers in ultra-wideband channels,” IEEE Trans. Wireless Commun. 6, 1265–1275 (2007).
[CrossRef]

IEEE J. Quantum Electron.

J. Suarez, K. Kravtsov, and P. Prucnal, “Incoherent method of optical interference cancellation for radio-frequency communications,” IEEE J. Quantum Electron. 45, 402–408 (2009).
[CrossRef]

IEEE J. Sel. Areas Commun.

G. Bottomley, T. Ottosson, and Y.-P. E. Wang, “A generalized RAKE receiver for interference suppression,” IEEE J. Sel. Areas Commun. 18, 1536–1545 (2000).
[CrossRef]

IEEE J. Solid-State Circuits

F. J. Kub and E. W. Justh, “Analog CMOS implementation of high frequency least-mean-square error learning circuit,” IEEE J. Solid-State Circuits 30, 1391–1398 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave-optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

IEEE Trans. Wireless Commun.

D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Low complexity rake receivers in ultra-wideband channels,” IEEE Trans. Wireless Commun. 6, 1265–1275 (2007).
[CrossRef]

J. Lightwave Technol.

Proc. SPIE

L. M. Johnson, H. V. Roussell, and G. E. Betts, “Interferometric modulators for an adaptive nulling system,” Proc. SPIE 1790, 50–54 (1993).
[CrossRef]

J. Bruno, “Electro-optic cosite interference mitigation,” Proc. SPIE 7607, 76071A (2010).
[CrossRef]

Other

J. Suarez and P. Prucnal, “Characterization of the instantaneous bandwidth of counter-phase optical interference cancellation,” IEEE Photon. Technol. Lett. (2009).

F. J. Kub, E. W. Justh, and B. Lippard, “Self-calibrating hybrid analog CMOS co-site interference canceller,” in MILCOM Proceedings 1999 (IEEE, 1999), Vol. 2, pp. 1051–1054.

Quellan QHx220 datasheet, http://www.anglia-m2m.com/GPS/intersil/QHx220.pdf .

M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in IEEE MobiCom 2011 (ACM, Las Vegas, Nevada, 2011), pp. 301–312.

R. Cardinali, F. Colone, C. Ferretti, and P. Lombardo, “Comparison of clutter and multipath cancellation techniques for passive radar,” in 2007 IEEE Conference on Radar (IEEE, 2007), pp. 469–474.

B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, 1985).

http://www.smsmatrix.com/front/mob_doc/tech-1/chaptr05/cdma/rake.html .

N. Boubaker, and K. B. Letaief, “A low complexity MMSE-RAKE receiver in a realistic UWB channel and in the presence of NBI,” in IEEE Wireless Communications and Networking (IEEE, 2003), Vol. 1, pp. 233–237.

A. Sonnenschein and W. K. Hutchinson, “A design for an electro-optic implementation of a wideband nulling system,” in MILCOM 1990 (IEEE, 1990), Vol. 2, pp. 742–748.

Fiber-Span, application note, “Spurious free dynamic range,” http://www.fiber-span.com/Application_Note_Spurious%20Free%20Dynamic%20Range.pdf .

Maxim Integrated, application note, “Three methods of noise figure measurement.” http://www.maximintegrated.com/app-notes/index.mvp/id/2875 .

M. J. LaGasse, “Cosite interference rejection system using an optical approach,” U.S. patent 7,231,151 (12June2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

System architecture for the incoherent OCS. Rx = received signal arm; Tx = reference/transmitted signal arm.

Fig. 2.
Fig. 2.

System architecture for the coherent OCS.

Fig. 3.
Fig. 3.

System architecture for the direct modulation OCS.

Fig. 4.
Fig. 4.

Transfer functions and intermodulation functions for the incoherent, coherent, and direct modulation architectures. The linear-fitted trendlines indicate that the transfer functions have a slope of 1 and that the intermodulation functions have a slope of 3.

Fig. 5.
Fig. 5.

Experimental depth of cancellation performance for broadband (1 GHz) cancellation for the incoherent, coherent, and direct modulation optical interference cancellation architectures.

Tables (3)

Tables Icon

Table 1. Summary of the Values and Signal Parameters Used in the Experiments and Simulations of the Direct Modulation, Incoherent, and Coherent OCS Architectures

Tables Icon

Table 2. Summary of the Measured and Simulated Performance Parametersa

Tables Icon

Table 3. Summary of the Depth of Cancellation Experimentally Achieved by the Incoherent, Coherent, and Direct Modulation Architectures of the OCS for both Narrowband and Broadband Interferers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Losslink=Poutput,electricalPinput,electrical.
NF=Pnoise,out(174dBm/Hz+10log10(BW)+Gain).
SFDR=23(IIP3BNL10log10(BW)NF).

Metrics