Abstract

In a water environment, wavelength evolution behavior of long-period fiber gratings (LPFGs) written in H2-loaded fibers after annealing is studied. The phenomena that wavelength shifts in the longer wavelength direction and then in the shorter wavelength direction is observed. A shift of the grating resonance peak (LP05) of as much as 2.5 nm is found. A water-mediated model that water molecules induce the second diffusion of the remaining H2 in the fiber and a diffusion-reaction mechanism that water molecules penetrate into fiber internal structures are proposed and are combined to explain the wavelength evolution process. Both the calculated balance point time according to the model, and the qualitative analysis according to the mechanism, correspond well with the experimental results. This research indicates that wavelength variation has to be considered or prevented when H2-loaded LPFGs are used in a water environment.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  2. H. Sakata, Y. Takata, and S. Suzuki, “Single-channel bandpass filter based on vernier-aligned long-period fiber gratings,” IEEE Photon. Technol. Lett. 19, 1661–1663 (2007).
    [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  4. H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
    [CrossRef]
  5. S. Kher, S. Chaubey, R. Kashyap, and S. M. Oak, “Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors,” IEEE Photon. Technol. Lett. 24, 742–744 (2012).
    [CrossRef]
  6. F. J. Akki, A. S. Lalasangi, K. G. Manohar, P. Raikar, T. Srinivas, and U. S. Raikar, “Detection and determination of manganese concentration in water using a fiber Bragg grating coupled with nanotechnology,” Appl. Opt. 50, 6033–6038 (2011).
    [CrossRef]
  7. L. H. Olivier, A. Zohrabyan, and T. Galstian, “Development of fiber long period gratings for biological sensor applications,” Proc. SPIE 7099, 70990P (2008).
    [CrossRef]
  8. M. Smietana, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Opt. Express 19, 7971–7978 (2011).
    [CrossRef]
  9. L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.
  10. K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode–multimode–single-mode structure,” Opt. Eng. 48, 344011 (2009).
    [CrossRef]
  11. X. R. Li, Y. Q. Li, and Z. Y. Wen, “300 m optic fiber Bragg grating temperature sensing system for seawater measurement,” in 3rd International Photonics & OptoElectronics Meetings (POEM 2010) (IOP Publishing, 2011), Vol. 276, p. 012130.
  12. B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
    [CrossRef]
  13. K. Fujita, Y. Masuda, K. Nakayama, M. Ando, K. Sakamoto, J. Mohri, M. Yamauchi, M. Kimura, Y. Mizutani, S. Kimura, T. Yokouchi, Y. Suzaki, and S. Ejima, “Dynamic evolution of the spectrum of long-period fiber Bragg gratings fabricated from hydrogen-loaded optical fiber by ultraviolet laser irradiation,” Appl. Opt. 44, 7032–7038 (2005).
    [CrossRef]
  14. B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
    [CrossRef]
  15. Y. Masuda, M. Nakamura, C. Komatsu, K. Fujita, M. Yamauchi, M. Kimura, Y. Mizutani, S. Kimura, Y. Suzaki, T. Yokouchi, and K. Nakagawa, “Wavelength evolution of fiber Bragg gratings fabricated from hydrogen-loaded optical fiber during annealing,” J. Lightwave Technol. 22, 934–941 (2004).
    [CrossRef]
  16. E. Abdi, A. D. Rujinski, M. Poulain, and I. Severin, “Damage of optical fibers under wet environments,” Exp. Mech. 50, 1225–1234 (2010).
    [CrossRef]
  17. D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
    [CrossRef]
  18. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002).
    [CrossRef]
  19. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet induced fiber Bragg gratings,” J. Appl. Phys. 73, 76–80 (1994).
  20. W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [CrossRef]
  21. D. L. Philen, “Measurements of OH diffusion in optical-fiber cores,” Bell Syst. Tech. J. 61, 283–293 (1982).
  22. M. Tomozawaz, “Water diffusion in silica glass and wet oxidation of Si: an interpretation for the high speed of wet oxidation,” J. Electrochem. Soc. 158, G115–G118 (2011).
    [CrossRef]
  23. L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
    [CrossRef]
  24. F. Bakhti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of hydrogen in-fiber and out-fiber diffusion on central wavelength of UV-written long period grating,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 55–57.
  25. Y. Liu, L. Zhang, W. Zhang, and J. A. R. Williams, “Investigation of H2 in- and out-diffusion impact on long-period grating devices,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 1999), pp. 197–296.
  26. P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
    [CrossRef]
  27. K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185, 203–220 (1995).
    [CrossRef]
  28. R. H. Doremus, in Reactivity of Solids, J. W. Mitchell, R. C. DeVries, R. W. Roberts, and P. Cannon, eds. (Wiley, 1969), pp. 667–673.

2012 (2)

S. Kher, S. Chaubey, R. Kashyap, and S. M. Oak, “Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors,” IEEE Photon. Technol. Lett. 24, 742–744 (2012).
[CrossRef]

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

2011 (3)

2010 (2)

E. Abdi, A. D. Rujinski, M. Poulain, and I. Severin, “Damage of optical fibers under wet environments,” Exp. Mech. 50, 1225–1234 (2010).
[CrossRef]

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

2009 (2)

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode–multimode–single-mode structure,” Opt. Eng. 48, 344011 (2009).
[CrossRef]

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

2008 (1)

L. H. Olivier, A. Zohrabyan, and T. Galstian, “Development of fiber long period gratings for biological sensor applications,” Proc. SPIE 7099, 70990P (2008).
[CrossRef]

2007 (1)

H. Sakata, Y. Takata, and S. Suzuki, “Single-channel bandpass filter based on vernier-aligned long-period fiber gratings,” IEEE Photon. Technol. Lett. 19, 1661–1663 (2007).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

2002 (1)

2001 (1)

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
[CrossRef]

2000 (1)

B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
[CrossRef]

1996 (2)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

1995 (1)

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185, 203–220 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet induced fiber Bragg gratings,” J. Appl. Phys. 73, 76–80 (1994).

1991 (1)

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[CrossRef]

1982 (1)

D. L. Philen, “Measurements of OH diffusion in optical-fiber cores,” Bell Syst. Tech. J. 61, 283–293 (1982).

Abdi, E.

E. Abdi, A. D. Rujinski, M. Poulain, and I. Severin, “Damage of optical fibers under wet environments,” Exp. Mech. 50, 1225–1234 (2010).
[CrossRef]

Akki, F. J.

Ando, M.

Argyros, A.

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

Bakhti, F.

F. Bakhti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of hydrogen in-fiber and out-fiber diffusion on central wavelength of UV-written long period grating,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 55–57.

Bechstein, R.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Bennion, I.

Besenbacher, F.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

Bowgerette, T.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Chan, H. L. W.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
[CrossRef]

Chaubey, S.

S. Kher, S. Chaubey, R. Kashyap, and S. M. Oak, “Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors,” IEEE Photon. Technol. Lett. 24, 742–744 (2012).
[CrossRef]

Choy, C. L.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
[CrossRef]

Cruz, J. L.

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

Dahn, E.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Davis, K. M.

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185, 203–220 (1995).
[CrossRef]

Demokan, M. S.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
[CrossRef]

Dong, X. Y.

B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
[CrossRef]

Doremus, R. H.

R. H. Doremus, in Reactivity of Solids, J. W. Mitchell, R. C. DeVries, R. W. Roberts, and P. Cannon, eds. (Wiley, 1969), pp. 667–673.

Ejima, S.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet induced fiber Bragg gratings,” J. Appl. Phys. 73, 76–80 (1994).

Farberow, C. A.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Ferchaud, N.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Fujita, K.

Galstian, T.

L. H. Olivier, A. Zohrabyan, and T. Galstian, “Development of fiber long period gratings for biological sensor applications,” Proc. SPIE 7099, 70990P (2008).
[CrossRef]

Grabow, L. C.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Guan, B. O.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
[CrossRef]

B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
[CrossRef]

Ho, S. L.

B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
[CrossRef]

Johnson, I.

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Jung, H.

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

Kashyap, R.

S. Kher, S. Chaubey, R. Kashyap, and S. M. Oak, “Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors,” IEEE Photon. Technol. Lett. 24, 742–744 (2012).
[CrossRef]

Kher, S.

S. Kher, S. Chaubey, R. Kashyap, and S. M. Oak, “Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors,” IEEE Photon. Technol. Lett. 24, 742–744 (2012).
[CrossRef]

Kim, J. K.

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

Kimura, M.

Kimura, S.

Klimov, D.

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode–multimode–single-mode structure,” Opt. Eng. 48, 344011 (2009).
[CrossRef]

Ko, D. K.

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

Kolber, Z.

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode–multimode–single-mode structure,” Opt. Eng. 48, 344011 (2009).
[CrossRef]

Komatsu, C.

Kudernatsch, W.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Lægsgaard, E.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Lalasangi, A. S.

Large, M. C. J.

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

Larrey, J.

F. Bakhti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of hydrogen in-fiber and out-fiber diffusion on central wavelength of UV-written long period grating,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 55–57.

Lee, J.

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet induced fiber Bragg gratings,” J. Appl. Phys. 73, 76–80 (1994).

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[CrossRef]

Li, X. R.

X. R. Li, Y. Q. Li, and Z. Y. Wen, “300 m optic fiber Bragg grating temperature sensing system for seawater measurement,” in 3rd International Photonics & OptoElectronics Meetings (POEM 2010) (IOP Publishing, 2011), Vol. 276, p. 012130.

Li, Y. Q.

X. R. Li, Y. Q. Li, and Z. Y. Wen, “300 m optic fiber Bragg grating temperature sensing system for seawater measurement,” in 3rd International Photonics & OptoElectronics Meetings (POEM 2010) (IOP Publishing, 2011), Vol. 276, p. 012130.

Liu, S. Y.

B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
[CrossRef]

Liu, Y.

Y. Liu, L. Zhang, W. Zhang, and J. A. R. Williams, “Investigation of H2 in- and out-diffusion impact on long-period grating devices,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 1999), pp. 197–296.

Manohar, K. G.

Marrec, L.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Masuda, Y.

Mavrikakis, M.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Merte, L. R.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet induced fiber Bragg gratings,” J. Appl. Phys. 73, 76–80 (1994).

Mizutani, Y.

Mohri, J.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet induced fiber Bragg gratings,” J. Appl. Phys. 73, 76–80 (1994).

Nakagawa, K.

Nakamura, M.

Nakayama, K.

Oak, S. M.

S. Kher, S. Chaubey, R. Kashyap, and S. M. Oak, “Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors,” IEEE Photon. Technol. Lett. 24, 742–744 (2012).
[CrossRef]

Oh, K.

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

Olivier, L. H.

L. H. Olivier, A. Zohrabyan, and T. Galstian, “Development of fiber long period gratings for biological sensor applications,” Proc. SPIE 7099, 70990P (2008).
[CrossRef]

Park, S. H.

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

Peng, G. W.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Philen, D. L.

D. L. Philen, “Measurements of OH diffusion in optical-fiber cores,” Bell Syst. Tech. J. 61, 283–293 (1982).

Poulain, M.

E. Abdi, A. D. Rujinski, M. Poulain, and I. Severin, “Damage of optical fibers under wet environments,” Exp. Mech. 50, 1225–1234 (2010).
[CrossRef]

Poumellec, B.

F. Bakhti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of hydrogen in-fiber and out-fiber diffusion on central wavelength of UV-written long period grating,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 55–57.

Pucel, B.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Quetel, L.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Raikar, P.

Raikar, U. S.

Ralph, P. T.

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Renault, C.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Rieboldt, F.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Rujinski, A. D.

E. Abdi, A. D. Rujinski, M. Poulain, and I. Severin, “Damage of optical fibers under wet environments,” Exp. Mech. 50, 1225–1234 (2010).
[CrossRef]

Sáez-Rodríguez, D.

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

Sakamoto, K.

Sakata, H.

H. Sakata, Y. Takata, and S. Suzuki, “Single-channel bandpass filter based on vernier-aligned long-period fiber gratings,” IEEE Photon. Technol. Lett. 19, 1661–1663 (2007).
[CrossRef]

Sansonetti, P.

F. Bakhti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of hydrogen in-fiber and out-fiber diffusion on central wavelength of UV-written long period grating,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 55–57.

Severin, I.

E. Abdi, A. D. Rujinski, M. Poulain, and I. Severin, “Damage of optical fibers under wet environments,” Exp. Mech. 50, 1225–1234 (2010).
[CrossRef]

Shin, W.

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

Shu, X. W.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Smietana, M.

Srinivas, T.

Stephen, W. J.

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Suzaki, Y.

Suzuki, S.

H. Sakata, Y. Takata, and S. Suzuki, “Single-channel bandpass filter based on vernier-aligned long-period fiber gratings,” IEEE Photon. Technol. Lett. 19, 1661–1663 (2007).
[CrossRef]

Takata, Y.

H. Sakata, Y. Takata, and S. Suzuki, “Single-channel bandpass filter based on vernier-aligned long-period fiber gratings,” IEEE Photon. Technol. Lett. 19, 1661–1663 (2007).
[CrossRef]

Tam, H. Y.

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
[CrossRef]

B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
[CrossRef]

Tomozawa, M.

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185, 203–220 (1995).
[CrossRef]

Tomozawaz, M.

M. Tomozawaz, “Water diffusion in silica glass and wet oxidation of Si: an interpretation for the high speed of wet oxidation,” J. Electrochem. Soc. 158, G115–G118 (2011).
[CrossRef]

Tregoat, D.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

Wang, K.

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode–multimode–single-mode structure,” Opt. Eng. 48, 344011 (2009).
[CrossRef]

Webb, D. J.

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

Wen, Z. Y.

X. R. Li, Y. Q. Li, and Z. Y. Wen, “300 m optic fiber Bragg grating temperature sensing system for seawater measurement,” in 3rd International Photonics & OptoElectronics Meetings (POEM 2010) (IOP Publishing, 2011), Vol. 276, p. 012130.

Wendt, S.

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Williams, J. A. R.

Y. Liu, L. Zhang, W. Zhang, and J. A. R. Williams, “Investigation of H2 in- and out-diffusion impact on long-period grating devices,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 1999), pp. 197–296.

Yamauchi, M.

Yokouchi, T.

Zhang, L.

X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002).
[CrossRef]

Y. Liu, L. Zhang, W. Zhang, and J. A. R. Williams, “Investigation of H2 in- and out-diffusion impact on long-period grating devices,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 1999), pp. 197–296.

Zhang, W.

Y. Liu, L. Zhang, W. Zhang, and J. A. R. Williams, “Investigation of H2 in- and out-diffusion impact on long-period grating devices,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 1999), pp. 197–296.

Zohrabyan, A.

L. H. Olivier, A. Zohrabyan, and T. Galstian, “Development of fiber long period gratings for biological sensor applications,” Proc. SPIE 7099, 70990P (2008).
[CrossRef]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

D. L. Philen, “Measurements of OH diffusion in optical-fiber cores,” Bell Syst. Tech. J. 61, 283–293 (1982).

Exp. Mech. (1)

E. Abdi, A. D. Rujinski, M. Poulain, and I. Severin, “Damage of optical fibers under wet environments,” Exp. Mech. 50, 1225–1234 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, “Growth of long-period fiber gratings in H2-loaded fiber after 193 nm UV inscription,” IEEE Photon. Technol. Lett. 12, 642–644 (2000).
[CrossRef]

H. Sakata, Y. Takata, and S. Suzuki, “Single-channel bandpass filter based on vernier-aligned long-period fiber gratings,” IEEE Photon. Technol. Lett. 19, 1661–1663 (2007).
[CrossRef]

H. Jung, W. Shin, J. K. Kim, S. H. Park, D. K. Ko, J. Lee, and K. Oh, “Bending and strain sensitivities in a helicoidal long-period fiber gratings,” IEEE Photon. Technol. Lett. 21, 1232–1234 (2009).
[CrossRef]

S. Kher, S. Chaubey, R. Kashyap, and S. M. Oak, “Turnaround-point long-period fiber gratings (TAP-LPGs) as high-radiation-dose sensors,” IEEE Photon. Technol. Lett. 24, 742–744 (2012).
[CrossRef]

IEEE Sens. J. (1)

D. Sáez-Rodríguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into UV inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10, 1169–1173 (2010).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet induced fiber Bragg gratings,” J. Appl. Phys. 73, 76–80 (1994).

J. Electrochem. Soc. (1)

M. Tomozawaz, “Water diffusion in silica glass and wet oxidation of Si: an interpretation for the high speed of wet oxidation,” J. Electrochem. Soc. 158, G115–G118 (2011).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

K. M. Davis and M. Tomozawa, “Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity,” J. Non-Cryst. Solids 185, 203–220 (1995).
[CrossRef]

Meas. Sci. Technol. (2)

W. J. Stephen and P. T. Ralph, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

B. O. Guan, H. Y. Tam, H. L. W. Chan, C. L. Choy, and M. S. Demokan, “Growth characteristics of long-period gratings in hydrogen-loaded fiber during and after 193 nm UV inscription,” Meas. Sci. Technol. 12, 818–823 (2001).
[CrossRef]

Opt. Eng. (2)

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode–multimode–single-mode structure,” Opt. Eng. 48, 344011 (2009).
[CrossRef]

P. J. Lemaire, “Reliability of optical fibers exposed to hydrogen: prediction of long-term loss increases,” Opt. Eng. 30, 780–789 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

L. H. Olivier, A. Zohrabyan, and T. Galstian, “Development of fiber long period gratings for biological sensor applications,” Proc. SPIE 7099, 70990P (2008).
[CrossRef]

Science (1)

L. R. Merte, G. W. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis, and F. Besenbacher, “Water-mediated proton hopping on an iron oxide surface,” Science 336, 889–893 (2012).
[CrossRef]

Other (5)

F. Bakhti, J. Larrey, P. Sansonetti, and B. Poumellec, “Impact of hydrogen in-fiber and out-fiber diffusion on central wavelength of UV-written long period grating,” in Bragg Gratings, Photosensitivity and Poling in Glass Fibers and Waveguides: Fundamentals and Applications, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), pp. 55–57.

Y. Liu, L. Zhang, W. Zhang, and J. A. R. Williams, “Investigation of H2 in- and out-diffusion impact on long-period grating devices,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 1999), pp. 197–296.

R. H. Doremus, in Reactivity of Solids, J. W. Mitchell, R. C. DeVries, R. W. Roberts, and P. Cannon, eds. (Wiley, 1969), pp. 667–673.

L. Marrec, T. Bowgerette, E. Dahn, N. Ferchaud, B. Pucel, L. Quetel, C. Renault, and D. Tregoat, “In-situ optical fibre sensors for temperature and salinity monitoring,” Oceans 2005-Europe (IEEE, 2005), pp. 1276–1278.

X. R. Li, Y. Q. Li, and Z. Y. Wen, “300 m optic fiber Bragg grating temperature sensing system for seawater measurement,” in 3rd International Photonics & OptoElectronics Meetings (POEM 2010) (IOP Publishing, 2011), Vol. 276, p. 012130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the experimental setup and (b) transmission spectrum of the LPFGs at 333 K after annealing in a thermostatic water-bath.

Fig. 2.
Fig. 2.

Evolution of the resonance peak (LP05 at 1570 nm) with time after annealing (a) in air and (b) in water.

Fig. 3.
Fig. 3.

Schematic diagram of the remaining H2 diffusion process of acceleration by the water molecules on fiber surface. (The shaded area indicates the interior of the fiber, and the white area indicates the exterior of the fiber.)

Fig. 4.
Fig. 4.

Radial profiles of the H2 concentration (top), refractive index (middle) and wavelength shift (bottom). The refractive index change and wavelength shift with H2 out diffusion from cladding (a) and from core (b). The curves in the top mean the out diffusion of H2 in the cladding and core are a gradual process.

Fig. 5.
Fig. 5.

Comparison of experimentally observed decay to that predicted by the two techniques. They agree well with the predictions made by the aging curve.

Fig. 6.
Fig. 6.

Wavelength shift with time during dehydration.

Fig. 7.
Fig. 7.

Wavelength shifts of the LPFGs for the 1st and the 2nd immersion in water.

Fig. 8.
Fig. 8.

Process of water molecules penetrating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λres=(nconcl)·Λ,
λresX=γ·λres·(1ΛΛX+1ΔnΔnX),
D(cm2/s)=2.83×104exp(40.19(kJ/mol)RT),
λresX=γ·λres·(1ΛΛX1ΔnnclX).
λresX=γ·λresΔn·ncoX.

Metrics