Abstract

The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Barker and D. Pilbeam, Handbook of Plant Nutrition (CRC, 2006), pp. 3–18.
  2. R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
    [CrossRef]
  3. H. Auernhammer, “Precision farming—the environmental challenge,” Comput. Electron. Agric. 30, 31–43 (2001).
    [CrossRef]
  4. V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004).
    [CrossRef]
  5. D. A. Cremers and L. J. Radziemski, “Basics of the LIBS plasma,” in Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), pp. 23–52.
  6. R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
    [CrossRef]
  7. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175–1181 (1996).
    [CrossRef]
  8. B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582–1589 (2007).
    [CrossRef]
  9. M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
    [CrossRef]
  10. S. Pandhija and A. Rai, “Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials,” Pramana 70, 553–563 (2008).
    [CrossRef]
  11. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009).
    [CrossRef]
  12. J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
    [CrossRef]
  13. D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
    [CrossRef]
  14. G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
    [CrossRef]
  15. J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
    [CrossRef]
  16. V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
    [CrossRef]
  17. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
    [CrossRef]
  18. Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 65, 744–749 (2010).
    [CrossRef]
  19. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
    [CrossRef]
  20. M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
    [CrossRef]
  21. D. Diaz, D. W. Hahn, and A. Molina, “Evaluation of laser-induced breakdown spectroscopy (LIBS) as a measurement technique for evaluation of total elemental concentration in soils,” Appl. Spectrosc. 66, 99–106 (2012).
    [CrossRef]
  22. B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24, 1665–1675 (2009).
    [CrossRef]
  23. P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012).
    [CrossRef]
  24. Soil Survey Staff. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (United States Department of Agriculture, 1999).
  25. D. L. Sparks, Methods of Soil Analysis. Part 3, Chemical Methods (Soil Science Society of America, 1996).
  26. J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
    [CrossRef]
  27. V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species,” Anal. Chem. 77, 1118–1124 (2005).
    [CrossRef]
  28. B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

2012 (2)

D. Diaz, D. W. Hahn, and A. Molina, “Evaluation of laser-induced breakdown spectroscopy (LIBS) as a measurement technique for evaluation of total elemental concentration in soils,” Appl. Spectrosc. 66, 99–106 (2012).
[CrossRef]

P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012).
[CrossRef]

2011 (1)

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

2010 (2)

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 65, 744–749 (2010).
[CrossRef]

R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

2009 (6)

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009).
[CrossRef]

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24, 1665–1675 (2009).
[CrossRef]

2008 (3)

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
[CrossRef]

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

S. Pandhija and A. Rai, “Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials,” Pramana 70, 553–563 (2008).
[CrossRef]

2007 (1)

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582–1589 (2007).
[CrossRef]

2005 (1)

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species,” Anal. Chem. 77, 1118–1124 (2005).
[CrossRef]

2004 (1)

V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004).
[CrossRef]

2002 (1)

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef]

2001 (4)

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

H. Auernhammer, “Precision farming—the environmental challenge,” Comput. Electron. Agric. 30, 31–43 (2001).
[CrossRef]

J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

1996 (1)

1994 (1)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Adamchuk, V. I.

V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004).
[CrossRef]

Ahmed, A. H. H.

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

Araújo, M. C. U.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Auernhammer, H.

H. Auernhammer, “Precision farming—the environmental challenge,” Comput. Electron. Agric. 30, 31–43 (2001).
[CrossRef]

Baig, M. A.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009).
[CrossRef]

Barbini, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

Barker, A.

A. Barker and D. Pilbeam, Handbook of Plant Nutrition (CRC, 2006), pp. 3–18.

Bousquet, B.

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582–1589 (2007).
[CrossRef]

Braga, J. W. B.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Bublitz, J.

J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
[CrossRef]

Buckley, S. G.

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

Canioni, L.

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582–1589 (2007).
[CrossRef]

Capitelli, M.

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Carranza, J. E.

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef]

Chiba, M. K.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Coelho, R. M.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Colao, F.

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

Cortez, J.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Cremers, D. A.

Da Silva, R. M.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
[CrossRef]

de Abreu, M. F.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

De Giacomo, A.

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

De Pascale, O.

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Dell’Aglio, M.

R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

DellAglio, M.

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Diaz, D.

Diwakar, P. K.

P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012).
[CrossRef]

Dölle, C.

J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
[CrossRef]

dos Santos, L. M.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

Eppler, A. S.

Fantoni, R.

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

Ferreira, E. C.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
[CrossRef]

Ferreira, E. J.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
[CrossRef]

Ferris, M. J.

Fisher, B. T.

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

Gaft, M.

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 65, 744–749 (2010).
[CrossRef]

Galvão, R. K. H.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Gaudiuso, R.

R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Giacomo, A. D.

R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Godoi, Q.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Gondal, M. A.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009).
[CrossRef]

Groisman, Y.

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 65, 744–749 (2010).
[CrossRef]

Hahn, D. W.

P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012).
[CrossRef]

D. Diaz, D. W. Hahn, and A. Molina, “Evaluation of laser-induced breakdown spectroscopy (LIBS) as a measurement technique for evaluation of total elemental concentration in soils,” Appl. Spectrosc. 66, 99–106 (2012).
[CrossRef]

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24, 1665–1675 (2009).
[CrossRef]

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species,” Anal. Chem. 77, 1118–1124 (2005).
[CrossRef]

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

Harith, M. A.

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

Hartmann, A.

J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
[CrossRef]

Hassan, M.

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

Hickmott, D. D.

Hohreiter, V.

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species,” Anal. Chem. 77, 1118–1124 (2005).
[CrossRef]

Horn, R.

J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
[CrossRef]

Hummel, J. W.

V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004).
[CrossRef]

Hussain, T.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009).
[CrossRef]

Johnsen, H. A.

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

Kim, K.-W.

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

Ko, E.-J.

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

Kompa, K. L.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Koskelo, A. C.

Krug, F. J.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Kwak, J.

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

Lai, A.

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

Lazic, V.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

Leme, F. O.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Lenth, C.

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

Loper, K. H.

P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012).
[CrossRef]

Madari, B. E.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Martin-Neto, L.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
[CrossRef]

Matiaske, A.-M.

P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012).
[CrossRef]

Miano, T. M.

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Milori, D. M. B. P.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
[CrossRef]

Molina, A.

Morgan, M. T.

V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004).
[CrossRef]

Niessner, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Nogueira, A. R. d. A.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

Nunes, L. C.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Palucci, A.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

Pandhija, S.

S. Pandhija and A. Rai, “Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials,” Pramana 70, 553–563 (2008).
[CrossRef]

Park, K.

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

Pascale, O. D.

R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Pasquini, C.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Pilbeam, D.

A. Barker and D. Pilbeam, Handbook of Plant Nutrition (CRC, 2006), pp. 3–18.

Pontes, M. J. C.

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, “Basics of the LIBS plasma,” in Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), pp. 23–52.

Rai, A.

S. Pandhija and A. Rai, “Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials,” Pramana 70, 553–563 (2008).
[CrossRef]

Salb, C.

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

Santos, D.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Schade, W.

J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
[CrossRef]

Schechter, I.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Schroeder, H.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Senesi, G. S.

R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Sighicelli, M.

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

Sirven, J.-B.

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582–1589 (2007).
[CrossRef]

Sparks, D. L.

D. L. Sparks, Methods of Soil Analysis. Part 3, Chemical Methods (Soil Science Society of America, 1996).

Trevizan, L. C.

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Upadhyaya, S. K.

V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004).
[CrossRef]

Windom, B. C.

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24, 1665–1675 (2009).
[CrossRef]

Wisbrun, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Yamani, Z. H.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009).
[CrossRef]

Zaccone, C.

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Anal. Chem. (4)

R. Wisbrun, I. Schechter, R. Niessner, H. Schroeder, and K. L. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74, 5450–5454 (2002).
[CrossRef]

V. Hohreiter and D. W. Hahn, “Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species,” Anal. Chem. 77, 1118–1124 (2005).
[CrossRef]

B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Anal. Chem. 55, 1312–1319 (2001).

Anal. Chim. Acta (1)

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, “Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain,” Anal. Chim. Acta 642, 12–18 (2009).
[CrossRef]

Appl. Spectrosc. (2)

Comput. Electron. Agric. (2)

H. Auernhammer, “Precision farming—the environmental challenge,” Comput. Electron. Agric. 30, 31–43 (2001).
[CrossRef]

V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil sensors for precision agriculture,” Comput. Electron. Agric. 44, 71–91 (2004).
[CrossRef]

Environ. Res. (1)

G. S. Senesi, M. DellAglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
[CrossRef]

Eur. J. Soil Sci. (1)

J. Bublitz, C. Dölle, W. Schade, A. Hartmann, and R. Horn, “Laser-induced breakdown spectroscopy for soil diagnostics,” Eur. J. Soil Sci. 52, 305–312 (2001).
[CrossRef]

J. Anal. At. Spectrom. (2)

B. C. Windom and D. W. Hahn, “Laser ablation-laser induced breakdown spectroscopy (LA-LIBS): a means for overcoming matrix effects leading to improved analyte response,” J. Anal. At. Spectrom. 24, 1665–1675 (2009).
[CrossRef]

P. K. Diwakar, K. H. Loper, A.-M. Matiaske, and D. W. Hahn, “Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles,” J. Anal. At. Spectrom. 27, 1110–1119 (2012).
[CrossRef]

J. Hazar. Mater. (1)

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “On-line monitoring of remediation process of chromium polluted soil using LIBS,” J. Hazar. Mater. 163, 1265–1271 (2009).
[CrossRef]

Pramana (1)

S. Pandhija and A. Rai, “Laser-induced breakdown spectroscopy: a versatile tool for monitoring traces in materials,” Pramana 70, 553–563 (2008).
[CrossRef]

Sensors (1)

R. Gaudiuso, M. Dell’Aglio, O. D. Pascale, G. S. Senesi, and A. D. Giacomo, “Laser-induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage, and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010).
[CrossRef]

Spectrochim. Acta Part B (7)

B. Bousquet, J.-B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582–1589 (2007).
[CrossRef]

M. Hassan, M. Sighicelli, A. Lai, F. Colao, A. H. H. Ahmed, R. Fantoni, and M. A. Harith, “Studying the enhanced phytoremediation of lead contaminated soils via laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 63, 1225–1229 (2008).
[CrossRef]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta Part B 63, 1216–1220 (2008).
[CrossRef]

Y. Groisman and M. Gaft, “Online analysis of potassium fertilizers by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 65, 744–749 (2010).
[CrossRef]

J. Kwak, C. Lenth, C. Salb, E.-J. Ko, K.-W. Kim, and K. Park, “Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1105–1110 (2009).
[CrossRef]

D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, J. W. B. Braga, and F. J. Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta Part B 64, 1073–1078 (2009).
[CrossRef]

Talanta (1)

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, L. M. dos Santos, L. Martin-Neto, and A. R. d. A. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85, 435–440 (2011).
[CrossRef]

Other (4)

Soil Survey Staff. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (United States Department of Agriculture, 1999).

D. L. Sparks, Methods of Soil Analysis. Part 3, Chemical Methods (Soil Science Society of America, 1996).

A. Barker and D. Pilbeam, Handbook of Plant Nutrition (CRC, 2006), pp. 3–18.

D. A. Cremers and L. J. Radziemski, “Basics of the LIBS plasma,” in Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006), pp. 23–52.

Supplementary Material (2)

» Media 1: CSV (0 KB)     
» Media 2: CSV (6 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for the traditional LIBS soil experiments. The laser beam is focused on the surface of the soil sample.

Fig. 2.
Fig. 2.

Experimental setup for modified LA-LIBS approach. The Nd:YAG laser beam is divided in two by a beam-splitter. The first beam generates ablation on the soil sample. The ablated material is carried by a gaseous stream to the place where the second laser beam forms the analytical plasma.

Fig. 3.
Fig. 3.

Comparison of the K raw emission spectra (766.49 nm line) recorded for two soil samples with different K total content for (a) traditional LIBS and (b) LA-LIBS. For the traditional LIBS each spectrum corresponds to a single 100-shot average while for LA-LIBS each spectrum corresponds to a single 200-shot average.

Fig. 4.
Fig. 4.

Potassium (766.49 nm K I line) calibration curves corresponding to the fifteen soil samples for the traditional LIBS and the LA-LIBS data. The K spectral intensity values are normalized to the integrated continuum intensity area (P/B ratio). The lines correspond to a linear least-squares fit and the error bars correspond to the standard deviation of the individual measurements (see Media 1 and Media 2).

Fig. 5.
Fig. 5.

Calibration curves corresponding to the 65 soil samples using the LA-LIBS data for the total elemental concentration of (a) iron, (b) magnesium, (c) manganese, (d) calcium, (e) sodium, and (f) potassium. The lines correspond to linear least-squares fits. Error bars represent the standard deviation of three replicates.

Tables (3)

Tables Icon

Table 1. Center Position, Delay, and Gate Times Used for Each Spectral Window

Tables Icon

Table 2. Atomic Emission Lines and Spectroscopic Parameters Used for Quantitative Analysis

Tables Icon

Table 3. Certified Total Elemental Concentration Ranges (% by Mass) for the Set of 65 Different Soils Analyzed with LA-LIBS

Metrics