H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36, 3723–3725 (2011).

[CrossRef]

T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, “Fast image reconstruction in fluorescence optical tomography using data compression,” Opt. Lett. 35, 763–765 (2010).

[CrossRef]

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Software 33, 1–22 (2010).

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

C. Qin, S. Zhu, and J. Tian, “New optical molecular imaging systems,” Curr. Pharm. Biotechnol. 11, 620–627 (2010).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imag. 2009, 960573(2009).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17, 8062–8080 (2009).

[CrossRef]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescence tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparse regularization,” Opt. Express 15, 13695–13708 (2007).

[CrossRef]

M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization,” Appl. Comput. Harmon. Anal. 23, 346–367 (2007).

[CrossRef]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617(2007).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photon imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

A. X. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, “Least angle regression,” Ann. Statist. 32, 407–499 (2004).

[CrossRef]

M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to variable selection in least squares problems,” IMA J. Numer. Anal. 20, 389–403 (2000).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, “Fast image reconstruction in fluorescence optical tomography using data compression,” Opt. Lett. 35, 763–765 (2010).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

D. P. Bertsekas, Convex Analysis and Optimization (Athena Scientific, 2003).

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617(2007).

[CrossRef]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17, 8062–8080 (2009).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, “Least angle regression,” Ann. Statist. 32, 407–499 (2004).

[CrossRef]

M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization,” Appl. Comput. Harmon. Anal. 23, 346–367 (2007).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imag. 2009, 960573(2009).

[CrossRef]

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Software 33, 1–22 (2010).

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617(2007).

[CrossRef]

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for l1-regularized minimization with applications to compresses sensing,” Technical report 07-07 (Department of Computational and Applied Mathematics, Rice University, 2007).

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Software 33, 1–22 (2010).

B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, “Least angle regression,” Ann. Statist. 32, 407–499 (2004).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, “Least angle regression,” Ann. Statist. 32, 407–499 (2004).

[CrossRef]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617(2007).

[CrossRef]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617(2007).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617(2007).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization,” Appl. Comput. Harmon. Anal. 23, 346–367 (2007).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photon imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to variable selection in least squares problems,” IMA J. Numer. Anal. 20, 389–403 (2000).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to variable selection in least squares problems,” IMA J. Numer. Anal. 20, 389–403 (2000).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

C. Qin, S. Zhu, and J. Tian, “New optical molecular imaging systems,” Curr. Pharm. Biotechnol. 11, 620–627 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imag. 2009, 960573(2009).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photon imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

C. Qin, S. Zhu, and J. Tian, “New optical molecular imaging systems,” Curr. Pharm. Biotechnol. 11, 620–627 (2010).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17, 8062–8080 (2009).

[CrossRef]

S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imag. 2009, 960573(2009).

[CrossRef]

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Software 33, 1–22 (2010).

B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, “Least angle regression,” Ann. Statist. 32, 407–499 (2004).

[CrossRef]

M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to variable selection in least squares problems,” IMA J. Numer. Anal. 20, 389–403 (2000).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

A. X. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photon imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photon imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imag. 2009, 960573(2009).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for l1-regularized minimization with applications to compresses sensing,” Technical report 07-07 (Department of Computational and Applied Mathematics, Rice University, 2007).

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for l1-regularized minimization with applications to compresses sensing,” Technical report 07-07 (Department of Computational and Applied Mathematics, Rice University, 2007).

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

C. Qin, S. Zhu, and J. Tian, “New optical molecular imaging systems,” Curr. Pharm. Biotechnol. 11, 620–627 (2010).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imag. 2009, 960573(2009).

[CrossRef]

M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization,” Appl. Comput. Harmon. Anal. 23, 346–367 (2007).

[CrossRef]

X. Ma, J. Tian, X. Yang, C. Qin, S. Zhu, and Z. Xue, “Research on liver tumor proliferation and angiogenesis based on multi-modality molecular imaging,” Acta Biophys. Sin. 27, 355–364 (2011).

[CrossRef]

B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, “Least angle regression,” Ann. Statist. 32, 407–499 (2004).

[CrossRef]

M. Elad, B. Matalon, and M. Zibulevsky, “Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization,” Appl. Comput. Harmon. Anal. 23, 346–367 (2007).

[CrossRef]

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescence tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007).

[CrossRef]

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular imaging,” Appl. Opt. 47, 2011–2016 (2008).

[CrossRef]

H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, and J. Liang, “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Appl. Opt. 51, 975–986 (2012).

[CrossRef]

C. Qin, S. Zhu, and J. Tian, “New optical molecular imaging systems,” Curr. Pharm. Biotechnol. 11, 620–627 (2010).

[CrossRef]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process. 1, 606–617(2007).

[CrossRef]

D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).

M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to variable selection in least squares problems,” IMA J. Numer. Anal. 20, 389–403 (2000).

[CrossRef]

S. Zhu, J. Tian, G. Yan, C. Qin, and J. Feng, “Cone beam micro-CT system for small animal imaging and performance evaluation,” Int. J. Biomed. Imag. 2009, 960573(2009).

[CrossRef]

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Software 33, 1–22 (2010).

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole body photon imaging,” Nat. Biotechnol. 23, 313–320 (2005).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomograph,” Opt. Express 13, 6756–6771 (2005).

[CrossRef]

A. X. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13, 9847–9857 (2005).

[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).

[CrossRef]

D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Opt. Express 18, 8630–8646 (2010).

[CrossRef]

X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18, 19876–19893 (2010).

[CrossRef]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17, 8062–8080 (2009).

[CrossRef]

N. Cao, A. Nehorai, and M. Jacob, “Image reconstruction for diffuse optical tomography using sparse regularization,” Opt. Express 15, 13695–13708 (2007).

[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007).

[CrossRef]

T. J. Rudge, V. Y. Soloviev, and S. R. Arridge, “Fast image reconstruction in fluorescence optical tomography using data compression,” Opt. Lett. 35, 763–765 (2010).

[CrossRef]

F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, “Toward whole-body optical imaging of rats using single-photon counting fluorescence tomography,” Opt. Lett. 36, 3723–3725 (2011).

[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225–4241 (2005).

[CrossRef]

D. P. Bertsekas, Convex Analysis and Optimization (Athena Scientific, 2003).

E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for l1-regularized minimization with applications to compresses sensing,” Technical report 07-07 (Department of Computational and Applied Mathematics, Rice University, 2007).