Abstract

We demonstrate that by lowering gain lifetime, transverse amplified spontaneous emission imposes practical limit on usable aspect ratio of large-aperture amplifiers in a high-energy Ti:sapphire system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity - 300 TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109–2114 (2008).
    [CrossRef]
  2. D. D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22, 1165–1173(1986).
    [CrossRef]
  3. J. Trenholme, “Fluorescence amplification and parasitic oscillation limitations in disc lasers,” NRL memo report 2480 (Naval Research Laboratory, Washington, DC, 1972).

2008

1986

D. D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22, 1165–1173(1986).
[CrossRef]

Cheriaux, G.

Chvykov, V.

Eggleston, J. M.

D. D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22, 1165–1173(1986).
[CrossRef]

Kalinchenko, G.

Krushelnick, K.

Lowenthal, D. D.

D. D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22, 1165–1173(1986).
[CrossRef]

Maksimchuk, A.

Matsuoka, T.

Mourou, G.

Nees, J.

Planchon, T.

Rousseau, P.

Trenholme, J.

J. Trenholme, “Fluorescence amplification and parasitic oscillation limitations in disc lasers,” NRL memo report 2480 (Naval Research Laboratory, Washington, DC, 1972).

Yanovsky, V.

IEEE J. Quantum Electron.

D. D. Lowenthal and J. M. Eggleston, “ASE effects in small aspect ratio laser oscillators and amplifiers with nonsaturable absorption,” IEEE J. Quantum Electron. 22, 1165–1173(1986).
[CrossRef]

Opt. Express

Other

J. Trenholme, “Fluorescence amplification and parasitic oscillation limitations in disc lasers,” NRL memo report 2480 (Naval Research Laboratory, Washington, DC, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Oscilloscope traces of ASE from HERCULES amplifiers: #1 (1 in. diameter)-blue/upper and #2 (2 in. diameter)-red/lower.

Fig. 2.
Fig. 2.

Measured (blue) and calculated (red) dependence of ASE on time. Four amplifiers (from top to bottom) correspond to: HERCULES amplifier 1 (d=25mm, l=30mm, A=0.83), HERCULES amplifier 2 (d=50mm, l=20mm, A=2.5), hypothetical amplifier 3 (crosses, d=150mm, l=40mm, A=3.75), and hypothetical amplifier 4 (rhombs, d=150mm, l=20mm, A=7.5). All amplifiers are instantly pumped from both sides to the same pump fluence. For proper comparison with the model experimental data from falling edge of the curves only (Fig. 1) are plotted.

Fig. 3.
Fig. 3.

Dependence of gain lifetime (defined at the point where ASE intensity drops to the level 0.6 from maximum level) on the amplifier aspect ratio A.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dISE=hνnτdV4πr2.
ASE0=hντ4π0Rρ2neσnρ14πρ2dρ=hν(eσnR1)στ.
A=32β[2eββ(11β)+2β21]1,
A3/β2e2σnR.
net/τ/(Exp(αnd)(l/d)γ

Metrics