Abstract

This paper reports high-accuracy Sellmeier and thermo-optic dispersion formulas for GaSe that provide excellent reproduction of the phase-matching conditions for second-, third-, and fourth- harmonic generation of CO2 laser radiation at 10.5910 μm in the 20°C–200°C range as well as the data points of Feng et al. [Opt. Express 16, 9978 (2008) [CrossRef]  ] for second-harmonic generation of CO2 laser radiation at 9.5862 μm and an Er3+:YSGG laser at 2.7960 μm in the 165°C230°C range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kato and N. Umemura, “Sellmeier equations for GaS and GaSe and their applications to nonlinear optics in GaSxSe1−x,” Opt. Lett. 36, 746–747 (2011).
    [CrossRef]
  2. K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
    [CrossRef]
  3. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient tunable coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [CrossRef]
  4. E. Takaoka and K. Kato, “Temperature phase-matching properties for harmonic generation in GaSe,” Jpn. J. Appl. Phys. 38, 2755–2759 (1999).
    [CrossRef]
  5. Z. Feng, Z. Kang, F. Wu, J. Gao, Y. Jiang, H. Zhang, Y. M. Andreev, G. V. Lanskii, V. V. Atuchin, and T. A. Gavrilova, “SHG in doped GaSe:In crystals,” Opt. Express 16, 9978–9985 (2008).
    [CrossRef]
  6. K. Kato, E. Takaoka, N. Umemura, and T. Chonan, “High-efficiency, 90° phase-matched SHG at 5.2955 μm in AgGa1−xInxSe2,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2001) paper CTuM14.
  7. W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).
  8. H. Zhang, Z. Kang, Y. Jiang, J. Gao, F. Wu, Z. Feng, Y. M. Andreev, G. V. Lanskii, A. N. Morozov, E. L. Sachkova, and S. Yu. Sarkisov, “SHG phase matching in GaSe and mixed GaSe1−xSx, x≦0.412, crystals at room temperature,” Opt. Express 16, 9951–9957 (2008).
    [CrossRef]
  9. K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
    [CrossRef]

2011 (1)

2008 (2)

2005 (1)

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

2002 (1)

1999 (1)

E. Takaoka and K. Kato, “Temperature phase-matching properties for harmonic generation in GaSe,” Jpn. J. Appl. Phys. 38, 2755–2759 (1999).
[CrossRef]

1996 (1)

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).

1995 (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[CrossRef]

Allakhverdiev, K. R.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Andreev, Y. M.

Atuchin, V. V.

Baykara, T.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Chonan, T.

K. Kato, E. Takaoka, N. Umemura, and T. Chonan, “High-efficiency, 90° phase-matched SHG at 5.2955 μm in AgGa1−xInxSe2,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2001) paper CTuM14.

Curl, R. F.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).

Ding, Y. J.

Eckhoff, W. C.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).

Feng, Z.

Fernelius, N.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient tunable coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[CrossRef]

Gao, J.

Gavrilova, T. A.

Goldstein, J.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Hanna, S.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Jiang, Y.

Kang, Z.

Kato, K.

K. Kato and N. Umemura, “Sellmeier equations for GaS and GaSe and their applications to nonlinear optics in GaSxSe1−x,” Opt. Lett. 36, 746–747 (2011).
[CrossRef]

E. Takaoka and K. Kato, “Temperature phase-matching properties for harmonic generation in GaSe,” Jpn. J. Appl. Phys. 38, 2755–2759 (1999).
[CrossRef]

K. Kato, E. Takaoka, N. Umemura, and T. Chonan, “High-efficiency, 90° phase-matched SHG at 5.2955 μm in AgGa1−xInxSe2,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2001) paper CTuM14.

Kaya, A. A.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Kulevskii, L. A.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[CrossRef]

Kulibekov Gulubayov, A.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Lanskii, G. V.

Morozov, A. N.

Putnam, R. S.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).

Sachkova, E. L.

Salaeva, Z.

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Sarkisov, S. Yu.

Shi, W.

Takaoka, E.

E. Takaoka and K. Kato, “Temperature phase-matching properties for harmonic generation in GaSe,” Jpn. J. Appl. Phys. 38, 2755–2759 (1999).
[CrossRef]

K. Kato, E. Takaoka, N. Umemura, and T. Chonan, “High-efficiency, 90° phase-matched SHG at 5.2955 μm in AgGa1−xInxSe2,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2001) paper CTuM14.

Tittel, F. K.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).

Umemura, N.

K. Kato and N. Umemura, “Sellmeier equations for GaS and GaSe and their applications to nonlinear optics in GaSxSe1−x,” Opt. Lett. 36, 746–747 (2011).
[CrossRef]

K. Kato, E. Takaoka, N. Umemura, and T. Chonan, “High-efficiency, 90° phase-matched SHG at 5.2955 μm in AgGa1−xInxSe2,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2001) paper CTuM14.

Vodopyanov, K.

Vodopyanov, K. L.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[CrossRef]

Wang, S.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).

Wu, F.

Zhang, H.

Appl. Phys. B (1)

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, and F. K. Tittel, “A continuously tunable long-wavelength CW IR source for high-resolution spectroscopy and trace-gas detection,” Appl. Phys. B 63, 437–441 (1996).

J. Appl. Phys. (1)

K. R. Allakhverdiev, T. Baykara, A. Kulibekov Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

E. Takaoka and K. Kato, “Temperature phase-matching properties for harmonic generation in GaSe,” Jpn. J. Appl. Phys. 38, 2755–2759 (1999).
[CrossRef]

Opt. Commun. (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65–18 μm spectral region,” Opt. Commun. 118, 375–378 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

K. Kato, E. Takaoka, N. Umemura, and T. Chonan, “High-efficiency, 90° phase-matched SHG at 5.2955 μm in AgGa1−xInxSe2,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2001) paper CTuM14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Phase-matching curves for Type 1 DFG between the Nd:YAG laser and the Nd:YAG laser-pumped beta-barium borate optical parametric oscillator in GaSe. The solid ( K ) and dashed ( V ) lines are calculated with our Sellmeier equations of [1] (solid line) and Vodopyanov and Kulevskii [2] (dashed line). Open circles: experimental points taken from [3].

Fig. 2.
Fig. 2.

Temperature-dependent phase-matching angles for Type 1 SHG of the Er 3 + : YSGG laser at 2.7960 μm in GaSe. The solid line is the theoretical curve calculated with the Sellmeier and thermo-optic dispersion formulas presented in this text. The dashed line is the theoretical curve calculated with θ ext = + 6.1 × 10 3 ( T - 27 ) + 49.31 ( deg ) . Triangles: θ ext = 49.31 ° at 27°C as given by the Sellmeier equations of Vodopyanov and Kulevskii [2]. Open circles: experimental points taken from [5].

Fig. 3.
Fig. 3.

Temperature-dependent phase-matching angles for Type 1 SHG of the CO 2 laser at 9.5862 μm in GaSe. The solid line is the theoretical curve calculated with the Sellmeier and thermo-optic dispersion formulas presented in this text. The dashed line is the theoretical curve calculated with θ ext = 1.36 × 10 3 ( T - 27 ) + 39.45 ( deg ) . Triangles: θ ext = 39.45 ° at 27°C as given by the Sellmeier equations of Vodopyanov and Kulevskii [2]. Open circles: experimental points taken from [5].

Tables (2)

Tables Icon

Table 1. Temperature Phase-Matching Parameters for SHG and SFG of the CO 2 Laser Line at 10.5910 μm in GaSe

Tables Icon

Table 2. Phase-Matching Parameters for Type 1 SHG of the CO 2 Laser Line at 9.5862 μm and the Er 3 + : YSGG Laser at 2.7960 μm in GaSe (Comparison with the Data of Feng et al. [5])

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n o 2 = 10.6409 + 0.3788 λ 2 0.1232 + 7090.7 λ 2 2216.3 , n e 2 = 8.2477 + 0.2881 λ 2 0.1669 + 4927.5 λ 2 1990.1 ( 0.8 λ 1620 ) ,
d n o d T = ( 3.8764 λ 3 4.9338 λ 2 + 2.8974 λ + 9.1979 ) × 10 5 ( ° C 1 ) d n e d T = ( 30.3257 λ 3 7.4499 λ 2 + 3.3385 λ + 4.8576 ) × 10 5 ( 1.7652 λ 10.5910 ) ,

Metrics