Abstract

Coupling optical and thermal properties of a terahertz (THz) thermal converter based on the Seebeck effect provides an unsupplied room-temperature measuring device dedicated to THz power metrology. Performance characteristics such as broadband response (0–30 THz), high sensitivity (<25μW·Hz0.5), and the possibility to develop an internal absolute self-calibration estimated at 9.93W·V1 are reported. Advantages and drawbacks of this THz powermeter are discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Kreisler, and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235–1245 (2000).
    [CrossRef]
  2. U. Willer, A. Pohlkötter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
    [CrossRef]
  3. Thomas Keating, THz power meter, http://www.terahertz.co.uk/ .
  4. C. Pradere, J.-P. Caumes, B. Chassagne, and J. C. Batsale, French patent FR0952097 (01April2009).
  5. C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
    [CrossRef]
  6. G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).
  7. D. Balageas and P. Levesque, “A photothermal tool for electromagnetic phenomena characterization,” Rev. Gén. Therm. 37, 725–739 (1998).
    [CrossRef]
  8. J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
    [CrossRef]
  9. Gunn Oscillators, ZAX Millimeter Wave Corporation, www.millimeterwave.com .
  10. Micropelt manufacturer, http://micropelt.com/ .
  11. J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
    [CrossRef]

2012 (1)

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

2010 (1)

C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
[CrossRef]

2009 (2)

U. Willer, A. Pohlkötter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
[CrossRef]

J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
[CrossRef]

2008 (1)

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

2000 (1)

A. J. Kreisler, and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235–1245 (2000).
[CrossRef]

1998 (1)

D. Balageas and P. Levesque, “A photothermal tool for electromagnetic phenomena characterization,” Rev. Gén. Therm. 37, 725–739 (1998).
[CrossRef]

Aregba, W.

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

Balageas, D.

D. Balageas and P. Levesque, “A photothermal tool for electromagnetic phenomena characterization,” Rev. Gén. Therm. 37, 725–739 (1998).
[CrossRef]

Batsale, J. C.

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
[CrossRef]

C. Pradere, J.-P. Caumes, B. Chassagne, and J. C. Batsale, French patent FR0952097 (01April2009).

Battaglia, J. L.

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

Beere, H. E.

Caumes, J.-P.

J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
[CrossRef]

C. Pradere, J.-P. Caumes, B. Chassagne, and J. C. Batsale, French patent FR0952097 (01April2009).

Chassagne, B.

J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
[CrossRef]

C. Pradere, J.-P. Caumes, B. Chassagne, and J. C. Batsale, French patent FR0952097 (01April2009).

Coquillat, D.

J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
[CrossRef]

Gaugue, A.

A. J. Kreisler, and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235–1245 (2000).
[CrossRef]

Gavrilov, N. G.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Green, R. P.

Hany, C.

C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
[CrossRef]

Knap, W.

J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
[CrossRef]

Knyazev, B. A.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Kolobanov, E. I.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Kotenkov, V. V.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Kreisler, A. J.

A. J. Kreisler, and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235–1245 (2000).
[CrossRef]

Kubarev, V. V.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Kulipanov, G. N.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Kusiak, A.

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

Lebrun, H.

C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
[CrossRef]

Levesque, P.

D. Balageas and P. Levesque, “A photothermal tool for electromagnetic phenomena characterization,” Rev. Gén. Therm. 37, 725–739 (1998).
[CrossRef]

Losco, T.

Matveenko, A. N.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Medvedev, L. E.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Miginsky, S. V.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Mironenko, L. A.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Ovchar, V. K.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Pailhes, J.

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

Pohlkötter, A.

Popik, V. M.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Pradere, C.

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
[CrossRef]

C. Pradere, J.-P. Caumes, B. Chassagne, and J. C. Batsale, French patent FR0952097 (01April2009).

Ritchie, D. A.

Salikova, T. V.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Schade, W.

Scheglov, M. A.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Serednyakov, S. S.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Shevchenko, O. A.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Skrinsky, A. N.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Tcheskidov, V. G.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Teppe, F.

J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
[CrossRef]

Toutain, J.

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
[CrossRef]

Tredicucci, A.

Vinokurov, N. A.

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Willer, U.

Xu, J.

Chem. Eng. J. (1)

C. Hany, H. Lebrun, C. Pradere, J. Toutain, and J. C. Batsale, “Thermal analysis of chemical reaction with a continuous microfluidic calorimeter,” Chem. Eng. J. 160, 814–822 (2010).
[CrossRef]

Electron. Lett. (1)

J.-P. Caumes, B. Chassagne, D. Coquillat, F. Teppe, and W. Knap, “Focal-plane micro-bolometer arrays for 0.5 THz spatial room-temperature imaging,” Electron. Lett. 45, 34–35 (2009).
[CrossRef]

Int. J. Thermal Sci. (1)

J. Pailhes, C. Pradere, J. Toutain, J. L. Battaglia, A. Kusiak, W. Aregba, and J. C. Batsale, “Thermal quadrupole method with internal heat sources,” Int. J. Thermal Sci. 53, 49–55 (2012).
[CrossRef]

Opt. Express (1)

Rev. Gén. Therm. (1)

D. Balageas and P. Levesque, “A photothermal tool for electromagnetic phenomena characterization,” Rev. Gén. Therm. 37, 725–739 (1998).
[CrossRef]

Supercond. Sci. Technol. (1)

A. J. Kreisler, and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13, 1235–1245 (2000).
[CrossRef]

Terahertz Sci. Technol. (1)

G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev, E. I. Kolobanov, V. V. Kotenkov, V. V. Kubarev, A. N. Matveenko, L. E. Medvedev, S. V. Miginsky, L. A. Mironenko, V. K. Ovchar, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Serednyakov, O. A. Shevchenko, A. N. Skrinsky, V. G. Tcheskidov, and N. A. Vinokurov, “Research highlights from the Novosibirsk 400 W average power THz FEL,” Terahertz Sci. Technol. 1, 107–125 (2008).

Other (4)

Thomas Keating, THz power meter, http://www.terahertz.co.uk/ .

C. Pradere, J.-P. Caumes, B. Chassagne, and J. C. Batsale, French patent FR0952097 (01April2009).

Gunn Oscillators, ZAX Millimeter Wave Corporation, www.millimeterwave.com .

Micropelt manufacturer, http://micropelt.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scheme of the room-temperature THz detector. Front face: THz detection using a TTC placed on a thermopile behind an HDPE window (dotted squared). Rear face: in situ calibration using an electrical heater (see text for details). The semi-infinite medium copper block minimizes flux transfer from front to rear sides.

Fig. 2.
Fig. 2.

In situ Joule effect calibration: measurement of thermopile voltage response versus time for different imposed electrical powers.

Fig. 3.
Fig. 3.

In situ Joule effect calibration: measured differential steady-state voltage versus imposed electrical power fitted by linear regression giving the calibration coefficient of the system.

Fig. 4.
Fig. 4.

Calculated absorbance of the TTC from measured transmission using THz time-resolved spectroscopy.

Fig. 5.
Fig. 5.

Measured power response versus acquisition time of a 0.11 THz Gunn diode and fitted value using thermal modelization and inverse-processing methods [Eq. (3)].

Fig. 6.
Fig. 6.

Estimated power as function of time of a 0.11 THz Gunn diode using the thermal self-calibrated model.

Fig. 7.
Fig. 7.

Experimental results obtained for various THz sources going from 0.1 to 30 THz with power ranging from 0.05 to 1000 mW.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U(t)=Uf(1exp(t/H)),
P=αPUwithαP=λGβ,
P(t)=αPU(t)=αPUf(1exp(t/HA))
log[P(t)]=log(t)+log(αPUfHA),ift/HA<0.1.
P0(t)=kP-TTCU(t),
NEP=kP-TTCσ2πtacq,

Metrics