Abstract

Two-beam interference is a fundamental and well-understood approach to create Fizeau’s interference fringes. With a Mach–Zehnder interferometer, we utilize these two-beam interference Fizeau fringes for three-dimensional (3D) shape measurements. By introducing an acousto-optical deflector the phase of the interference fringes can be shifted with a rate of up to 200,000 Hz. When used in conjunction with highspeed cameras, this stereo-photogrammetric approach performs well for highspeed applications in comparison with the commonly used digital light processing projectors for stripe projection. Maximum speed and the achievable accuracy are discussed. Experiments and media substantiate the suitability, accuracy, and speed of this technique for very fast 3D shape measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang and S.-T. Yau, “High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
    [CrossRef]
  2. L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009 (2010).
    [CrossRef]
  3. C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).
  4. T. Weise, B. Leibe, and L. V. Gool, “Fast 3D scanning with automatic motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07) (IEEE, 2007).
  5. S. Lei and S. Zhang, “Flexible 3D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
    [CrossRef]
  6. Y. Wang, S. Zhang, and J. H. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express 19, 8539–8545 (2011).
    [CrossRef]
  7. Y. Wang, and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51, 6631–6636(2012).
    [CrossRef]
  8. S. Ettl, O. Arold, Z. Yang, and G. Häusler, “Flying triangulation—an optical 3D sensor for the motion-robust acquisition of complex objects,” Appl. Opt. 51, 281–289(2012).
    [CrossRef]
  9. M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50, 100503 (2011).
    [CrossRef]
  10. M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36, 3097–3099 (2011).
    [CrossRef]
  11. S. Dupont, J.-C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
    [CrossRef]
  12. X. Yin, H. Zhao, J. Zeng, and Y. Qu, “Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements,” Appl. Opt. 46, 3046–3051 (2007).
    [CrossRef]
  13. M. S. Mermelstein, D. L. Feldkhun, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000).
    [CrossRef]
  14. P. Albrecht and B. Michaelis, “Stereo photogrammetry with improved spatial resolution,” in Proceedings of Fourteenth International Conference on Pattern Recognition, Vol. 1 (IEEE Computer Society, 1998), pp. 845–849.
  15. M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51, 090503 (2012).
    [CrossRef]

2012 (3)

2011 (4)

Y. Wang, S. Zhang, and J. H. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express 19, 8539–8545 (2011).
[CrossRef]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50, 100503 (2011).
[CrossRef]

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36, 3097–3099 (2011).
[CrossRef]

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

2010 (2)

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009 (2010).
[CrossRef]

S. Dupont, J.-C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
[CrossRef]

2009 (1)

2007 (1)

2006 (1)

2000 (1)

M. S. Mermelstein, D. L. Feldkhun, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000).
[CrossRef]

Albrecht, P.

P. Albrecht and B. Michaelis, “Stereo photogrammetry with improved spatial resolution,” in Proceedings of Fourteenth International Conference on Pattern Recognition, Vol. 1 (IEEE Computer Society, 1998), pp. 845–849.

Arold, O.

Bräuer-Burchardt, C.

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

Breitbarth, A.

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

Chen, L. C.

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009 (2010).
[CrossRef]

Dupont, S.

S. Dupont, J.-C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
[CrossRef]

Ettl, S.

Feldkhun, D. L.

M. S. Mermelstein, D. L. Feldkhun, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000).
[CrossRef]

Gool, L. V.

T. Weise, B. Leibe, and L. V. Gool, “Fast 3D scanning with automatic motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07) (IEEE, 2007).

Große, M.

M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51, 090503 (2012).
[CrossRef]

Grosse, M.

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36, 3097–3099 (2011).
[CrossRef]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50, 100503 (2011).
[CrossRef]

Harendt, B.

M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51, 090503 (2012).
[CrossRef]

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36, 3097–3099 (2011).
[CrossRef]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50, 100503 (2011).
[CrossRef]

Häusler, G.

Heinze, M.

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

Kastelik, J.-C.

S. Dupont, J.-C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
[CrossRef]

Kowarschik, R.

M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51, 090503 (2012).
[CrossRef]

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36, 3097–3099 (2011).
[CrossRef]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50, 100503 (2011).
[CrossRef]

Kühmstedt, P.

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

Lei, S.

Leibe, B.

T. Weise, B. Leibe, and L. V. Gool, “Fast 3D scanning with automatic motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07) (IEEE, 2007).

Mermelstein, M. S.

M. S. Mermelstein, D. L. Feldkhun, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000).
[CrossRef]

Michaelis, B.

P. Albrecht and B. Michaelis, “Stereo photogrammetry with improved spatial resolution,” in Proceedings of Fourteenth International Conference on Pattern Recognition, Vol. 1 (IEEE Computer Society, 1998), pp. 845–849.

Nguyen, X. L.

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009 (2010).
[CrossRef]

Notni, G.

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

Oliver, J. H.

Pommeray, M.

S. Dupont, J.-C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
[CrossRef]

Qu, Y.

Schaffer, M.

M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51, 090503 (2012).
[CrossRef]

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “High-speed three-dimensional shape measurements of objects with laser speckles and acousto-optical deflection,” Opt. Lett. 36, 3097–3099 (2011).
[CrossRef]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50, 100503 (2011).
[CrossRef]

Schmidt, I.

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

Shirley, L. G.

M. S. Mermelstein, D. L. Feldkhun, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000).
[CrossRef]

Wang, Y.

Weise, T.

T. Weise, B. Leibe, and L. V. Gool, “Fast 3D scanning with automatic motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07) (IEEE, 2007).

Yang, Z.

Yau, S.-T.

Yin, X.

Zeng, J.

Zhang, S.

Zhao, H.

Appl. Opt. (3)

IEEE/ASME Trans. Mechatronics (1)

S. Dupont, J.-C. Kastelik, and M. Pommeray, “Structured light fringe projection setup using optimized acousto-optic deflectors,” IEEE/ASME Trans. Mechatronics 15, 557–560 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

L. C. Chen and X. L. Nguyen, “Dynamic 3D surface profilometry using a novel colour pattern encoded with a multiple triangular model,” Meas. Sci. Technol. 21, 054009 (2010).
[CrossRef]

Opt. Eng. (3)

M. S. Mermelstein, D. L. Feldkhun, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000).
[CrossRef]

M. Schaffer, M. Große, B. Harendt, and R. Kowarschik, “Outdoor three-dimensional shape measurements using laser-based structured illumination,” Opt. Eng. 51, 090503 (2012).
[CrossRef]

M. Grosse, M. Schaffer, B. Harendt, and R. Kowarschik, “Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding,” Opt. Eng. 50, 100503 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

C. Bräuer-Burchardt, A. Breitbarth, P. Kühmstedt, I. Schmidt, M. Heinze, and G. Notni, “Fringe projection based high-speed 3D sensor for real-time measurements,” Proc. SPIE 8082, 808212 (2011).

Other (2)

T. Weise, B. Leibe, and L. V. Gool, “Fast 3D scanning with automatic motion compensation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07) (IEEE, 2007).

P. Albrecht and B. Michaelis, “Stereo photogrammetry with improved spatial resolution,” in Proceedings of Fourteenth International Conference on Pattern Recognition, Vol. 1 (IEEE Computer Society, 1998), pp. 845–849.

Supplementary Material (3)

» Media 1: MPG (4130 KB)     
» Media 2: MPG (2834 KB)     
» Media 3: MPG (15086 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Shape measurement setup consisting of two cameras and the fringe shifter for pattern projection.

Fig. 2.
Fig. 2.

(a) Illumination unit (fringe shifter) showing the Mach–Zehnder interferometer for Fizeau fringe creation. Beam focusing lens, L1; pinhole, P; collimation lens, L2. AOD is for angle tuning. BS1 and BS2 are for beam division and combining. The mirrors are M1 and M2. Tilted parallel glass plate PR is for incidence-angle-dependent phase retardation. (b) Phase retardation at PR. A denotes the first, B the second, and C the third and fourth terms of Eq. (1).

Fig. 3.
Fig. 3.

Temporal correlation on the pixel basis. Both corresponding pixels show the most similar gray-value sequence over time.

Fig. 4.
Fig. 4.

(a) Example reconstruction of a balloon in a 10cm×10cm measurement volume (Media 1). The false colors represent the deviation of the points from a fitted plane. (b) Shows both pattern types. We also show the fringe patterns created by the fringe shifter and the statistical patterns used by the BLP approach (Media 2 and 3).

Fig. 5.
Fig. 5.

Point localization accuracy σ versus the number of images taken for one reconstruction. Coherent fringe shifting (blue, dark) compared with incoherent standard BLP projection (red, bright).

Fig. 6.
Fig. 6.

Point localization accuracy σ for N=9 versus the fringe period in camera pixels.

Fig. 7.
Fig. 7.

Damping of the ratio of photodiode voltage to frequency generator voltage versus the frequency applied. The intersection point of the fitted lines denotes the maximum beam angle switching rate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d=n0Dcosα(n1Dcosβ+DcosαDcos(αβ)cosβ).
ρi,j,i,j=t=1N(gi,j,tg¯i,j)·(gi,j,tg¯i,j)t=1N(gi,j,tg¯i,j)2·t=1N(gi,j,tg¯i,j)2.
zMax=p·7.4μm17mml2+b24·1sin{arctan(b2l)}.

Metrics