Abstract

The basic principle of the static polarization wind imaging interferometer (SPWII) is expounded in this paper. By using trigonometric function and complex amplitude methods, the complex vibration amplitude of each polarization device with deviation from its ideal direction is calculated. The variations of the fringe visibility and optical throughput with deviation angles are given analytically and simulated numerically. According to the design parameters of the SPWII, the air-equivalent length L is equal to 16.14 cm and the total transmissivity is greater than 0.4. When the polarization directions of each polarization device are all in the ideal directions, the total optical throughput can be maintained at about 16.4% of the incident optical intensity. When the polarization directions of each polarization device are all 2° deviated from the ideal positions, the total optical throughput is decreased by 0.08%. This work would be useful for the realization and data processing of the SPWII.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Hersom and G. G. Shepherd, “Characterization of the wind imaging interferometer,” Appl. Opt. 34, 2871–2879 (1995).
    [CrossRef]
  2. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
    [CrossRef]
  3. C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
    [CrossRef]
  4. G. G. Shepherd, W. A. Gault, and D. W. Miller, “WAMDII: wide-angle Michelson Doppler image interferometer for Spacelab,” Appl. Opt. 24, 1571–1583 (1985).
    [CrossRef]
  5. G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35, 2764–2773 (1996).
    [CrossRef]
  6. G. G. Shepherd, I. C. McDade, and W. A. Gault, “The stratospheric wind interferometer for transport studies (SWIFT),” Adv. Space Res. 27, 1071–1079 (2001).
    [CrossRef]
  7. W. A. Gault, S. Brown, and A. Moise, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
    [CrossRef]
  8. W. E. Ward, W. A. Gault, and N. Rowlands, “An imaging interferometer for satellite observations of wind and temperature on Mars, the dynamics atmosphere mars observer (DYNAMO),” Proc. SPIE 4833, 226–236 (2002).
    [CrossRef]
  9. J. C. Bird, F. C. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
    [CrossRef]
  10. C. M. Zhang, H. C. Zhu, and B. C. Zhao, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011).
    [CrossRef]
  11. W. A. Gault, S. Sargoytchev, and G. G. Shepherd, “Divided-mirror scanning technique for a small Michelson interferometer,” Proc. SPIE 2830, 15–18 (1996).
    [CrossRef]
  12. W. A. Gault, S. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266–272 (2001).
    [CrossRef]
  13. J. C. Wang, C. M. Zhang, B. C. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1625–1631 (2010) (in Chinese).
  14. N. Liu, C. M. Zhang, and J. C. Wang, “The theoretical measurement error of a novel static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 4369–4379 (2010) (in Chinese).
  15. L. Wang, B. C. Zhao, and C. M. Zhang, “Study on theory of polarizing Michelson interferometer for wind measurement based on polarizing arrays,” Acta Opt. Sin. 28, 700–704 (2008) (in Chinese).
    [CrossRef]
  16. C. M. Zhang and L. Y. Zhu, “Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer,” Acta Phys. Sin. 59, 989–997 (2010) (in Chinese).
  17. H. C. Zhu and C. M. Zhang, “Theoretical study of polarization atmosphere Michelson interferometer using multi-wavelength,” Acta Phys. Sin. 60, 074211 (2011) (in Chinese).
  18. H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010) (in Chinese).
  19. C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Wide field of view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
    [CrossRef]
  20. C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
    [CrossRef]
  21. C. M. Zhang, L. B. Xiang, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart Polariscope,” Opt. Commun. 203, 21–26 (2002).
    [CrossRef]
  22. C. M. Zhang, Q. M. Wu, and T. K. Mu, “Influences of pyramid prism deflection on inversion of wind velocity and temperature in a novel static polarization wind imaging interferometer,” Appl. Opt. 50, 6134–6139 (2011).
    [CrossRef]
  23. C. M. Zhang and Y. Li, “Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelsion interferometer,” Appl. Opt. 51, 6508–6517 (2012).
    [CrossRef]
  24. J. Millerd, N. Brock, and J. Hayes, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
    [CrossRef]
  25. M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J Opt. Soc. Am. A 8, 1457–1462 (1991).
  26. M. R. Descour, “The throughput advantage in imaging Fourier-transform spectrometers,” Proc. SPIE 2819, 285–290 (1996).

2012 (1)

2011 (3)

2010 (4)

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010) (in Chinese).

C. M. Zhang and L. Y. Zhu, “Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer,” Acta Phys. Sin. 59, 989–997 (2010) (in Chinese).

J. C. Wang, C. M. Zhang, B. C. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1625–1631 (2010) (in Chinese).

N. Liu, C. M. Zhang, and J. C. Wang, “The theoretical measurement error of a novel static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 4369–4379 (2010) (in Chinese).

2008 (1)

L. Wang, B. C. Zhao, and C. M. Zhang, “Study on theory of polarizing Michelson interferometer for wind measurement based on polarizing arrays,” Acta Opt. Sin. 28, 700–704 (2008) (in Chinese).
[CrossRef]

2006 (1)

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

2004 (2)

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Wide field of view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef]

J. Millerd, N. Brock, and J. Hayes, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

2003 (1)

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

2002 (2)

C. M. Zhang, L. B. Xiang, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart Polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

W. E. Ward, W. A. Gault, and N. Rowlands, “An imaging interferometer for satellite observations of wind and temperature on Mars, the dynamics atmosphere mars observer (DYNAMO),” Proc. SPIE 4833, 226–236 (2002).
[CrossRef]

2001 (2)

G. G. Shepherd, I. C. McDade, and W. A. Gault, “The stratospheric wind interferometer for transport studies (SWIFT),” Adv. Space Res. 27, 1071–1079 (2001).
[CrossRef]

W. A. Gault, S. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266–272 (2001).
[CrossRef]

1996 (4)

G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35, 2764–2773 (1996).
[CrossRef]

W. A. Gault, S. Sargoytchev, and G. G. Shepherd, “Divided-mirror scanning technique for a small Michelson interferometer,” Proc. SPIE 2830, 15–18 (1996).
[CrossRef]

W. A. Gault, S. Brown, and A. Moise, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
[CrossRef]

M. R. Descour, “The throughput advantage in imaging Fourier-transform spectrometers,” Proc. SPIE 2819, 285–290 (1996).

1995 (2)

J. C. Bird, F. C. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

C. H. Hersom and G. G. Shepherd, “Characterization of the wind imaging interferometer,” Appl. Opt. 34, 2871–2879 (1995).
[CrossRef]

1993 (1)

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

1991 (1)

M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J Opt. Soc. Am. A 8, 1457–1462 (1991).

1985 (1)

Bird, J. C.

J. C. Bird, F. C. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

Brock, N.

J. Millerd, N. Brock, and J. Hayes, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Brown, S.

W. A. Gault, S. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266–272 (2001).
[CrossRef]

W. A. Gault, S. Brown, and A. Moise, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
[CrossRef]

Descour, M. R.

M. R. Descour, “The throughput advantage in imaging Fourier-transform spectrometers,” Proc. SPIE 2819, 285–290 (1996).

Gault, W. A.

W. E. Ward, W. A. Gault, and N. Rowlands, “An imaging interferometer for satellite observations of wind and temperature on Mars, the dynamics atmosphere mars observer (DYNAMO),” Proc. SPIE 4833, 226–236 (2002).
[CrossRef]

W. A. Gault, S. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266–272 (2001).
[CrossRef]

G. G. Shepherd, I. C. McDade, and W. A. Gault, “The stratospheric wind interferometer for transport studies (SWIFT),” Adv. Space Res. 27, 1071–1079 (2001).
[CrossRef]

W. A. Gault, S. Brown, and A. Moise, “ERWIN: an E-region wind interferometer,” Appl. Opt. 35, 2913–2922 (1996).
[CrossRef]

W. A. Gault, S. Sargoytchev, and G. G. Shepherd, “Divided-mirror scanning technique for a small Michelson interferometer,” Proc. SPIE 2830, 15–18 (1996).
[CrossRef]

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

G. G. Shepherd, W. A. Gault, and D. W. Miller, “WAMDII: wide-angle Michelson Doppler image interferometer for Spacelab,” Appl. Opt. 24, 1571–1583 (1985).
[CrossRef]

Hayes, J.

J. Millerd, N. Brock, and J. Hayes, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Hersom, C.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Hersom, C. H.

Ikonen, E.

M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J Opt. Soc. Am. A 8, 1457–1462 (1991).

Jian, X. H.

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010) (in Chinese).

Junttila, M. L.

M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J Opt. Soc. Am. A 8, 1457–1462 (1991).

Kauppinen, J.

M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J Opt. Soc. Am. A 8, 1457–1462 (1991).

Li, Y.

Liang, F. C.

J. C. Bird, F. C. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

Liu, N.

J. C. Wang, C. M. Zhang, B. C. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1625–1631 (2010) (in Chinese).

N. Liu, C. M. Zhang, and J. C. Wang, “The theoretical measurement error of a novel static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 4369–4379 (2010) (in Chinese).

McDade, I. C.

G. G. Shepherd, I. C. McDade, and W. A. Gault, “The stratospheric wind interferometer for transport studies (SWIFT),” Adv. Space Res. 27, 1071–1079 (2001).
[CrossRef]

Miller, D. W.

Millerd, J.

J. Millerd, N. Brock, and J. Hayes, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Moise, A.

Mu, T. K.

Rowlands, N.

W. E. Ward, W. A. Gault, and N. Rowlands, “An imaging interferometer for satellite observations of wind and temperature on Mars, the dynamics atmosphere mars observer (DYNAMO),” Proc. SPIE 4833, 226–236 (2002).
[CrossRef]

Sargoytchev, S.

W. A. Gault, S. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266–272 (2001).
[CrossRef]

W. A. Gault, S. Sargoytchev, and G. G. Shepherd, “Divided-mirror scanning technique for a small Michelson interferometer,” Proc. SPIE 2830, 15–18 (1996).
[CrossRef]

Shepherd, G. G.

G. G. Shepherd, I. C. McDade, and W. A. Gault, “The stratospheric wind interferometer for transport studies (SWIFT),” Adv. Space Res. 27, 1071–1079 (2001).
[CrossRef]

G. G. Shepherd, “Application of Doppler Michelson imaging to upper atmospheric wind measurement: WINDII and beyond,” Appl. Opt. 35, 2764–2773 (1996).
[CrossRef]

W. A. Gault, S. Sargoytchev, and G. G. Shepherd, “Divided-mirror scanning technique for a small Michelson interferometer,” Proc. SPIE 2830, 15–18 (1996).
[CrossRef]

J. C. Bird, F. C. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

C. H. Hersom and G. G. Shepherd, “Characterization of the wind imaging interferometer,” Appl. Opt. 34, 2871–2879 (1995).
[CrossRef]

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

G. G. Shepherd, W. A. Gault, and D. W. Miller, “WAMDII: wide-angle Michelson Doppler image interferometer for Spacelab,” Appl. Opt. 24, 1571–1583 (1985).
[CrossRef]

Solheim, B. H.

J. C. Bird, F. C. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Thuillier, G.

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Wang, J. C.

J. C. Wang, C. M. Zhang, B. C. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1625–1631 (2010) (in Chinese).

N. Liu, C. M. Zhang, and J. C. Wang, “The theoretical measurement error of a novel static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 4369–4379 (2010) (in Chinese).

Wang, L.

L. Wang, B. C. Zhao, and C. M. Zhang, “Study on theory of polarizing Michelson interferometer for wind measurement based on polarizing arrays,” Acta Opt. Sin. 28, 700–704 (2008) (in Chinese).
[CrossRef]

Ward, W. E.

W. E. Ward, W. A. Gault, and N. Rowlands, “An imaging interferometer for satellite observations of wind and temperature on Mars, the dynamics atmosphere mars observer (DYNAMO),” Proc. SPIE 4833, 226–236 (2002).
[CrossRef]

Wu, Q. M.

Xiang, L. B.

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Wide field of view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. M. Zhang, L. B. Xiang, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart Polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

Zhang, C. M.

C. M. Zhang and Y. Li, “Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelsion interferometer,” Appl. Opt. 51, 6508–6517 (2012).
[CrossRef]

C. M. Zhang, Q. M. Wu, and T. K. Mu, “Influences of pyramid prism deflection on inversion of wind velocity and temperature in a novel static polarization wind imaging interferometer,” Appl. Opt. 50, 6134–6139 (2011).
[CrossRef]

H. C. Zhu and C. M. Zhang, “Theoretical study of polarization atmosphere Michelson interferometer using multi-wavelength,” Acta Phys. Sin. 60, 074211 (2011) (in Chinese).

C. M. Zhang, H. C. Zhu, and B. C. Zhao, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011).
[CrossRef]

J. C. Wang, C. M. Zhang, B. C. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1625–1631 (2010) (in Chinese).

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010) (in Chinese).

N. Liu, C. M. Zhang, and J. C. Wang, “The theoretical measurement error of a novel static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 4369–4379 (2010) (in Chinese).

C. M. Zhang and L. Y. Zhu, “Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer,” Acta Phys. Sin. 59, 989–997 (2010) (in Chinese).

L. Wang, B. C. Zhao, and C. M. Zhang, “Study on theory of polarizing Michelson interferometer for wind measurement based on polarizing arrays,” Acta Opt. Sin. 28, 700–704 (2008) (in Chinese).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Wide field of view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. M. Zhang, L. B. Xiang, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart Polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

Zhao, B. C.

C. M. Zhang, H. C. Zhu, and B. C. Zhao, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011).
[CrossRef]

J. C. Wang, C. M. Zhang, B. C. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1625–1631 (2010) (in Chinese).

L. Wang, B. C. Zhao, and C. M. Zhang, “Study on theory of polarizing Michelson interferometer for wind measurement based on polarizing arrays,” Acta Opt. Sin. 28, 700–704 (2008) (in Chinese).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Wide field of view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004).
[CrossRef]

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. M. Zhang, L. B. Xiang, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart Polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

Zhu, H. C.

H. C. Zhu and C. M. Zhang, “Theoretical study of polarization atmosphere Michelson interferometer using multi-wavelength,” Acta Phys. Sin. 60, 074211 (2011) (in Chinese).

C. M. Zhang, H. C. Zhu, and B. C. Zhao, “The tempo-spatially modulated polarization atmosphere Michelson interferometer,” Opt. Express 19, 9626–9635 (2011).
[CrossRef]

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010) (in Chinese).

Zhu, L. Y.

C. M. Zhang and L. Y. Zhu, “Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer,” Acta Phys. Sin. 59, 989–997 (2010) (in Chinese).

Acta Opt. Sin. (1)

L. Wang, B. C. Zhao, and C. M. Zhang, “Study on theory of polarizing Michelson interferometer for wind measurement based on polarizing arrays,” Acta Opt. Sin. 28, 700–704 (2008) (in Chinese).
[CrossRef]

Acta Phys. Sin. (5)

C. M. Zhang and L. Y. Zhu, “Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer,” Acta Phys. Sin. 59, 989–997 (2010) (in Chinese).

H. C. Zhu and C. M. Zhang, “Theoretical study of polarization atmosphere Michelson interferometer using multi-wavelength,” Acta Phys. Sin. 60, 074211 (2011) (in Chinese).

H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010) (in Chinese).

J. C. Wang, C. M. Zhang, B. C. Zhao, and N. Liu, “Study on the rule of light transmission through the four-sided pyramid prism in the static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 1625–1631 (2010) (in Chinese).

N. Liu, C. M. Zhang, and J. C. Wang, “The theoretical measurement error of a novel static polarization wind imaging interferometer,” Acta Phys. Sin. 59, 4369–4379 (2010) (in Chinese).

Adv. Space Res. (1)

G. G. Shepherd, I. C. McDade, and W. A. Gault, “The stratospheric wind interferometer for transport studies (SWIFT),” Adv. Space Res. 27, 1071–1079 (2001).
[CrossRef]

Appl. Opt. (7)

J Opt. Soc. Am. A (1)

M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier transform spectrometers,” J Opt. Soc. Am. A 8, 1457–1462 (1991).

J. Geophys. Res. (1)

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, and C. Hersom, “WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10725–10750 (1993).
[CrossRef]

Meas. Sci. Technol. (1)

J. C. Bird, F. C. Liang, B. H. Solheim, and G. G. Shepherd, “A polarizing Michelson interferometer for measuring thermospheric winds,” Meas. Sci. Technol. 6, 1368–1378 (1995).
[CrossRef]

Opt. Commun. (2)

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. M. Zhang, L. B. Xiang, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart Polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

Opt. Express (1)

Optik (1)

C. M. Zhang, B. C. Zhao, and L. B. Xiang, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006).
[CrossRef]

Proc. SPIE (5)

W. A. Gault, S. Sargoytchev, and G. G. Shepherd, “Divided-mirror scanning technique for a small Michelson interferometer,” Proc. SPIE 2830, 15–18 (1996).
[CrossRef]

W. A. Gault, S. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266–272 (2001).
[CrossRef]

W. E. Ward, W. A. Gault, and N. Rowlands, “An imaging interferometer for satellite observations of wind and temperature on Mars, the dynamics atmosphere mars observer (DYNAMO),” Proc. SPIE 4833, 226–236 (2002).
[CrossRef]

M. R. Descour, “The throughput advantage in imaging Fourier-transform spectrometers,” Proc. SPIE 2819, 285–290 (1996).

J. Millerd, N. Brock, and J. Hayes, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Overall optical layout for the SPWII.

Fig. 2.
Fig. 2.

Four-side PP. A beam is divided equally into four beams.

Fig. 3.
Fig. 3.

Polarizer array. (a) It is constructed by the four same polarizers in combination. (b) Adjacent ones of the four polarizers have a clockwise 45° direction difference. The direction of arrows represents the polarization direction of the polarizers.

Fig. 4.
Fig. 4.

Schematic diagram of PMI in the SPWII.

Fig. 5.
Fig. 5.

Decomposition and synthesis schematic diagram of the electric vector in the P1 and QWP2.

Fig. 6.
Fig. 6.

Decomposition and synthesis schematic diagram of the electric vector in the QWP1.

Fig. 7.
Fig. 7.

Decomposition and synthesis schematic diagram of the electric vector in the QWP3 and PA.

Fig. 8.
Fig. 8.

Variation of visibility V with the deviation angle α of the polarizer.

Fig. 9.
Fig. 9.

Variations of the visibility V with the deviation angles α and γ.

Fig. 10.
Fig. 10.

Variations of the visibility V with the deviation angles β1 and β2.

Fig. 11.
Fig. 11.

Complete throughput as a function of α and β, (a) ψ=0°, (b) ψ=45°, (c) ψ=90°, and (d) ψ=135°.

Fig. 12.
Fig. 12.

Total throughput as a function of α and β.

Fig. 13.
Fig. 13.

Complete throughput as a function of α with α=β1=β2=γ=α. (a) ψ=0°, (b) ψ=45°, (c) ψ=90°, and (d) ψ=135°.

Tables (1)

Tables Icon

Table 1. Thickness of the FWG with Preferred Achromaticity

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

E=T(λ)B(λ)AΩ,
AΩ=14πD2×2π(1cos(θ2))=π2D2sin2(θ4),
AΩmax=π2D4/(16L2).
E=I(λ)π2D4/(16L2),
E2=0.5E02=0.5I0.
E=Ecos(45°α),E=Esin(45°α).
Ex=Eosin(45°β2)+Eecos(45°β2)=Ecos(45°β2)sin(45°β2)+Esin(45°β2)cos(45°β2)=Ecos(2β2)=Ecos(45°α)cos(2β2).
Ez=Eocos(45°β1)+Eesin(45°β1)=Esin(45°β1)cos(45°β1)+Ecos(45°β1)sin(45°β1)=Ecos(2β1)=Esin(45°α)cos(2β1).
Exo=Exsin(45°γ),Exe=Excos(45°γ)eiπ/2,Ezo=Ezcos(45°γ)ei2πΔ/λ,Eze=Ezsin(45°γ)ei(2πΔ/λ+π/2),
Exo=Exocosψ,Exe=Exesinψ,Ezo=Ezocosψ,Eze=Ezesinψ,
Ex=Exo+Exe=Ecos(45°α)cos2β2[sin(45°γ)cosψcos(45°γ)sinψeiπ/2],
Ez=Ezo+Eze=Esin(45°α)cos2β1[cos(45°γ)cosψ+sin(45°γ)sinψeiπ/2]ei2πΔ/λ.
V=ImaxIminImax+Imin=2|Ex||Ez||Ex|2+|Ez|2.
V=2cos2αcos2β1cos2β21sin22γcos22ψ(1+sin2α)cos22β2(1sin2γcos2ψ)+(1sin2α)cos22β(1+sin2γcos2ψ).
E=Ex+Ez=Ecos(45°α)cos2β2[sin(45°γ)cosψcos(45°γ)sinψeiπ/2]+Esin(45°α)cos2β1cos(45°γ)cosψei2πΔ/λ+Esin(45°α)cos2β1sin(45°γ)sinψei(2πΔ/λ+π/2)=E[cos(45°α)cos2β2sin(45°γ)cosψ+sin(45°α)cos2β1cos(45°γ)cosψcos(2πΔ/λ)sin(45°α)cos2β1sin(45°γ)sinψsin(2πΔ/λ)]+iE[sin(45°α)cos2β1cos(45°γ)cosψsin(2πΔ/λ)+sin(45°α)cos2β1sin(45°γ)sinψcos(2πΔ/λ)cos(45°α)cos2β2cos(45°γ)sinψ].
I=EE*=E2{cos2(45°α)cos22β2[sin2(45°γ)cos2ψ+cos2(45°γ)sin2ψ]+sin2(45°α)cos22β1[cos2(45°γ)cos2ψ+sin2(45°γ)sin2ψ]+cos2αcos2β1cos2β2cos2γcos2ψcos(2πΔ/λ)/2cos2αcos2β1cos2β2sin2ψsin(2πΔ/λ)/2}.
E=A0{A1[sin2(45°γ)cos2ψ+cos2(45°γ)sin2ψ]+A2[cos2(45°γ)cos2ψ+sin2(45°γ)sin2ψ]+A3cos2γcos2ψcos(2πΔ/λ)A3sin2ψsin(2πΔ/λ)},
E0°=14A0[A1sin2(45°γ)+A2cos2(45°γ)+A3cos2γcos(2πΔ/λ)],E45°=14A0[12A1+12A2A3sin(2πΔ/λ)],E90°=14A0[A1cos2(45°γ)+A2sin2(45°γ)A3cos2γcos(2πΔ/λ)],E135°=14A0[12A1+12A2+A3sin(2πΔ/λ)].
T=95%×99.8%×(99%)4×(99%)2×99.8%×99%×92%×99%=0.803.
E0°=0.082I0[A1sin2(45°γ)+A2cos2(45°γ)+A3cos2γcos(2πΔ/λ)],E45°=0.082I0[12A1+12A2A3sin(2πΔ/λ)],E90°=0.082I0[A1cos2(45°γ)+A2sin2(45°γ)A3cos2γcos(2πΔ/λ)],E135°=0.082I0[12A1+12A2+A3sin(2πΔ/λ)].
Etotal=E0°+E45°+E90°+E135°=0.164I0(A1+A2)=0.164I[cos2(45°α)cos22β2+sin2(45°α)cos22β1]0.
E0°=0.041I0cos22β[cos22α+cos22αcos(2πΔ/λ)],E45°=0.041I0cos22β[1cos2αsin(2πΔ/λ)],E90°=0.041I0cos22β[2cos22αcos22αcos(2πΔ/λ)],E135°=0.041I0cos22β[1+cos2αsin(2πΔ/λ)].
E0°=0.041I0cos22α[cos22α+cos22αcos(2πΔ/λ)],E45°=0.041I0cos22α[1cos2αsin(2πΔ/λ)],E90°=0.041I0cos22α[2cos22αcos22αcos(2πΔ/λ)],E135°=0.041I0cos22α[1+cos2αsin(2πΔ/λ)].

Metrics