Abstract

A flat lens based on subwavelength periodic metal meshes has been developed using photolithographic techniques. These mesh grids are stacked at specific distances and embedded in polypropylene. A code was developed to optimize more than 1000 transmission line circuits required to vary the device phase shift across the lens flat surface, mimicking the behavior of a classical lens. A W-band mesh-lens prototype was successfully manufactured and its RF performance characterized using a vector network analyzer coupled to corrugated horn antennas. Co-polarization far-field beam patterns were measured and compared with finite-element method models. The excellent agreement between data and simulations validated our designing tools and manufacturing procedures. This mesh lens is a low-loss, robust, light, and compact device that has many potential applications including millimeter wave quasi-optical systems for future cosmic microwave background polarization instruments.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Sauleau, “Lens antennas for mm and sub-mm wave applications,” in Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory, Kharkov, Ukraine, 26–29 June (IEEE, 2006), pp. 18–23.
  2. P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
    [CrossRef]
  3. G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband photolithographic polariser for millimetre wave applications,” in Proceedings of PIERS 2012, Kuala Lumpur, Malaysia, 27–30 March (The Electromagnetics Academy, 2012), pp. 1748–1751.
  4. B. Maffei, G. Pisano, M. W. Ng, and Vic Haynes, “Millimetre wave photolithographic polariser beam impact,” in Proceedings PIERS 2012, Kuala Lumpur, 27–30 March (The Electromagnetics Academy, 2012), pp. 1761–1765.
  5. G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. 25, 101–114 (2012).
  6. B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
    [CrossRef]
  7. Ansys HFSS Website: http://www.ansys.com/ .
  8. P. Goldsmith, Quasioptical System: Gaussian Beam Quasioptical Propogation and Applications (IEEE, 1998).
  9. Interactive Data Language (IDL) Website: http://www.exelisvis.com/ .
  10. V. N. Nguyen, S. H. Yonak, and D. R. Smith, “Millimeter-wave artificial dielectric gradient index lenses,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP) (IEEE, 2009), pp. 1886–1890.

2012 (2)

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. 25, 101–114 (2012).

B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
[CrossRef]

2006 (1)

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

Ade, P. A. R.

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

Goldsmith, P.

P. Goldsmith, Quasioptical System: Gaussian Beam Quasioptical Propogation and Applications (IEEE, 1998).

Haynes, V.

B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
[CrossRef]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. 25, 101–114 (2012).

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband photolithographic polariser for millimetre wave applications,” in Proceedings of PIERS 2012, Kuala Lumpur, Malaysia, 27–30 March (The Electromagnetics Academy, 2012), pp. 1748–1751.

Haynes, Vic

B. Maffei, G. Pisano, M. W. Ng, and Vic Haynes, “Millimetre wave photolithographic polariser beam impact,” in Proceedings PIERS 2012, Kuala Lumpur, 27–30 March (The Electromagnetics Academy, 2012), pp. 1761–1765.

Maffei, B.

B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
[CrossRef]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. 25, 101–114 (2012).

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband photolithographic polariser for millimetre wave applications,” in Proceedings of PIERS 2012, Kuala Lumpur, Malaysia, 27–30 March (The Electromagnetics Academy, 2012), pp. 1748–1751.

B. Maffei, G. Pisano, M. W. Ng, and Vic Haynes, “Millimetre wave photolithographic polariser beam impact,” in Proceedings PIERS 2012, Kuala Lumpur, 27–30 March (The Electromagnetics Academy, 2012), pp. 1761–1765.

Ng, M. W.

B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
[CrossRef]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. 25, 101–114 (2012).

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband photolithographic polariser for millimetre wave applications,” in Proceedings of PIERS 2012, Kuala Lumpur, Malaysia, 27–30 March (The Electromagnetics Academy, 2012), pp. 1748–1751.

B. Maffei, G. Pisano, M. W. Ng, and Vic Haynes, “Millimetre wave photolithographic polariser beam impact,” in Proceedings PIERS 2012, Kuala Lumpur, 27–30 March (The Electromagnetics Academy, 2012), pp. 1761–1765.

Nguyen, V. N.

V. N. Nguyen, S. H. Yonak, and D. R. Smith, “Millimeter-wave artificial dielectric gradient index lenses,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP) (IEEE, 2009), pp. 1886–1890.

Ozturk, F.

B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
[CrossRef]

Pisano, G.

B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
[CrossRef]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. 25, 101–114 (2012).

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

B. Maffei, G. Pisano, M. W. Ng, and Vic Haynes, “Millimetre wave photolithographic polariser beam impact,” in Proceedings PIERS 2012, Kuala Lumpur, 27–30 March (The Electromagnetics Academy, 2012), pp. 1761–1765.

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband photolithographic polariser for millimetre wave applications,” in Proceedings of PIERS 2012, Kuala Lumpur, Malaysia, 27–30 March (The Electromagnetics Academy, 2012), pp. 1748–1751.

Sauleau, R.

R. Sauleau, “Lens antennas for mm and sub-mm wave applications,” in Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory, Kharkov, Ukraine, 26–29 June (IEEE, 2006), pp. 18–23.

Smith, D. R.

V. N. Nguyen, S. H. Yonak, and D. R. Smith, “Millimeter-wave artificial dielectric gradient index lenses,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP) (IEEE, 2009), pp. 1886–1890.

Tucker, C. E.

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

Weaver, S. O.

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

Yonak, S. H.

V. N. Nguyen, S. H. Yonak, and D. R. Smith, “Millimeter-wave artificial dielectric gradient index lenses,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP) (IEEE, 2009), pp. 1886–1890.

Proc. SPIE (2)

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[CrossRef]

B. Maffei, G. Pisano, M. W. Ng, V. Haynes, and F. Ozturk, “Dielectrically embedded mesh half-wave plate beam impact studies,” Proc. SPIE 8452, 84520K (2012).
[CrossRef]

Prog. Electromagn. Res. (1)

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. 25, 101–114 (2012).

Other (7)

R. Sauleau, “Lens antennas for mm and sub-mm wave applications,” in Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory, Kharkov, Ukraine, 26–29 June (IEEE, 2006), pp. 18–23.

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband photolithographic polariser for millimetre wave applications,” in Proceedings of PIERS 2012, Kuala Lumpur, Malaysia, 27–30 March (The Electromagnetics Academy, 2012), pp. 1748–1751.

B. Maffei, G. Pisano, M. W. Ng, and Vic Haynes, “Millimetre wave photolithographic polariser beam impact,” in Proceedings PIERS 2012, Kuala Lumpur, 27–30 March (The Electromagnetics Academy, 2012), pp. 1761–1765.

Ansys HFSS Website: http://www.ansys.com/ .

P. Goldsmith, Quasioptical System: Gaussian Beam Quasioptical Propogation and Applications (IEEE, 1998).

Interactive Data Language (IDL) Website: http://www.exelisvis.com/ .

V. N. Nguyen, S. H. Yonak, and D. R. Smith, “Millimeter-wave artificial dielectric gradient index lenses,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP) (IEEE, 2009), pp. 1886–1890.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

Inhomogeneous metal mesh devices can be modeled with a two-dimensional array of different TLs.

Fig. 2.
Fig. 2.

Gaussian beam propagation through an ideal lens in the far field.

Fig. 3.
Fig. 3.

Cartesian grid adopted for the mesh-lens cell columns, capacitive grid b/g, and mesh-lens grid distance parameters.

Fig. 4.
Fig. 4.

Mesh-lens transmissions and phase errors versus frequency for the first ten cell-columns TLs.

Fig. 5.
Fig. 5.

Mesh-lens transmissions and phase errors versus frequency for the last ten cell-columns TLs.

Fig. 6.
Fig. 6.

Mesh-lens transmissions and rms phase errors for all the 1020 cell-columns TLs; each point is the average across the W band. (The cells are progressively numbered with their distance from the optical axis.)

Fig. 7.
Fig. 7.

Mesh-lens b/g parameters for all the 1020 cell-columns TL recipes.

Fig. 8.
Fig. 8.

Pictures of the five independent metallic grids included in the mesh lens.

Fig. 9.
Fig. 9.

Preliminary two-dimensional model and simulations.

Fig. 10.
Fig. 10.

Three different types of models used to predict the far-field beam pattern of the mesh lens.

Fig. 11.
Fig. 11.

Model 1: mesh-lens HFSS model and first iteration analysis of the electromagnetic fields.

Fig. 12.
Fig. 12.

Model 2: HFSS model and simulations of the diffraction from an aperture illuminated by a Gaussian beam.

Fig. 13.
Fig. 13.

Model 3: plano-convex dielectric lens model and HFSS electromagnetic fields analysis.

Fig. 14.
Fig. 14.

W-band mesh-lens prototype (54 mm diameter) with details of the multiple grids.

Fig. 15.
Fig. 15.

Mesh-lens prototype grids details.

Fig. 16.
Fig. 16.

Experimental setup for far-field beam measurements.

Fig. 17.
Fig. 17.

Beam pattern measurements of 90 GHz versus Model 1 predictions.

Fig. 18.
Fig. 18.

Beam pattern measurements of 90 GHz versus Models 2 and 3.

Fig. 19.
Fig. 19.

Beam pattern measurements of 100 GHz versus Models 2 and 3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ(z,r)=kzπr2λR+ϕ0,
Δφ(z,r)=φ(z,r)φ(z,0)=πr2λR.
ϑFWHM=1.18λπω0ω0(λ)=1.18λπϑFWHM.

Metrics