Abstract

HfO2/SiO2 coatings are always fluence-limited by a class of rare catastrophic failures induced by a nanosecond laser with a wavelength of 1053 nm. The catastrophic damage in HfO2/SiO2 coatings behaves as the damage growth with repeated laser irradiation, and thus eventually limits the mirror performance. Understanding the damage processes and mechanisms associated with the catastrophic damage are important for reducing the occurrence of the catastrophic failure and allowing the HfO2/SiO2 coatings to survive at the high fluence required by high laser systems. The rough damage behavior of the catastrophic failure at the proper critical fluence is present. The pit and delamination in the catastrophic failure are investigated to find the possible reasons leading to the catastrophic failure. The experimental results indicate that nodular defect originated from the substrate easily incurs the catastrophic damage. The electric field enhancements of the pit and the substrate impurities may contribute to this phenomenon. The delamination is always present on the left of the pit when laser irradiates from left to right at oblique incidence, which may be related to the plasma plume toward the laser incidence.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
    [CrossRef]
  2. F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
    [CrossRef]
  3. X. F. Liu, Y. A. Zhao, D. Li, G. Hu, Y. Gao, Z. Fan, and J. Shao, “Characteristics of plasma scalds in multilayer dielectric films,” Appl. Opt. 50, 4226–4231 (2011).
    [CrossRef]
  4. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt. 50, C373–C381 (2011).
    [CrossRef]
  5. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
    [CrossRef]
  6. C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
    [CrossRef]
  7. S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
    [CrossRef]
  8. X. B. Cheng, Z. X. Shen, H. F. Jiao, and J. L. Zhang, “Laser damage study of nodules in electron-beam evaporated HfO2/SiO2 high reflectors,” Appl. Opt. 50, C357–C363 (2011).
    [CrossRef]
  9. C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
    [CrossRef]
  10. X. F. Liu, D. W. Li, Y. A. Zhao, and X. Li, “Further investigation on the damage characteristic of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
    [CrossRef]
  11. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
    [CrossRef]
  12. M. Poulingue, J. Dijon, and P. Garre, “1.06 μm laser irradiation on high reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
    [CrossRef]
  13. R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
    [CrossRef]
  14. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef]
  15. S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
    [CrossRef]
  16. Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
    [CrossRef]
  17. J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
    [CrossRef]
  18. S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
    [CrossRef]

2011 (5)

2010 (1)

2006 (1)

2005 (1)

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

2001 (1)

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

2000 (2)

S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
[CrossRef]

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

1999 (3)

M. Poulingue, J. Dijon, and P. Garre, “1.06 μm laser irradiation on high reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[CrossRef]

1997 (2)

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

1996 (1)

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

1994 (1)

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

André, B.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Anzellotti, J. F.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Bevis, R. P.

C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Borden, M. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Burnham, A.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Chase, L. L.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Cheng, X. B.

Chow, R.

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Demos, S. G.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Dijon, J.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

M. Poulingue, J. Dijon, and P. Garre, “1.06 μm laser irradiation on high reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

Fan, Z.

Feit, M. D.

Folta, J. A.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Gao, Y.

Garre, P.

M. Poulingue, J. Dijon, and P. Garre, “1.06 μm laser irradiation on high reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

Genin, F. Y.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Génin, F. Y.

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Griffin, A. J.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

He, H. B.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Hu, G.

Hue, J.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Jiao, H. F.

Kozlowski, M. R.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Li, D.

Li, D. W.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

X. F. Liu, D. W. Li, Y. A. Zhao, and X. Li, “Further investigation on the damage characteristic of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
[CrossRef]

Li, X.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

X. F. Liu, D. W. Li, Y. A. Zhao, and X. Li, “Further investigation on the damage characteristic of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
[CrossRef]

Liu, X. F.

Molau, N.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Monterros, A. M.

S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
[CrossRef]

Monterrosa, A. M.

Pellé, C.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Pistor, T. V.

Poulingue, M.

M. Poulingue, J. Dijon, and P. Garre, “1.06 μm laser irradiation on high reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

Qiu, S. R.

Radousky, B.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Rafin, B.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Ravel, G.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Reitter, T. A.

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Shan, Y. G.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Shao, J.

Sheehan, L. M.

C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Shen, Z. X.

Smith, D. J.

C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Staggs, M.

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

Steele, W. A.

S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
[CrossRef]

Stolz, C. J.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt. 50, C373–C381 (2011).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
[CrossRef]

C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[CrossRef]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Taylor, J. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Tench, R. J.

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Teslich, N. E.

S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
[CrossRef]

Thomas, M. D.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

von Gunten, M. K.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[CrossRef]

C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

Wang, Y.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Weakley, S. C.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[CrossRef]

Wolfe, J. E.

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Searching for optimal mitigation geometries for laser-resistant multilayer high-reflector coatings,” Appl. Opt. 50, C373–C381 (2011).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
[CrossRef]

Wu, Z. L.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[CrossRef]

Zhang, J. L.

Zhao, Y. A.

Appl. Opt. (6)

J. Vac. Sci. Technol. A (1)

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coatings,” J. Vac. Sci. Technol. A 12, 2808–2813 (1994).
[CrossRef]

Opt. Commun. (1)

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Proc. SPIE (10)

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1∶06  μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

S. G. Demos, M. R. Kozlowski, M. Staggs, L. L. Chase, A. Burnham, and B. Radousky, “Mechanisms to explain damage growth in optical materials,” Proc. SPIE 4347, 277–284 (2001).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterros, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X (2000).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

M. Poulingue, J. Dijon, and P. Garre, “1.06 μm laser irradiation on high reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188–195 (1999).
[CrossRef]

C. J. Stolz, F. Y. Genin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. von Gunten, D. J. Smith, and J. F. Anzellotti, “Effect of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster’s angle polarizers at 1064 nm,” Proc. SPIE 2966, 265–272 (1997).
[CrossRef]

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

F. Y. Génin, C. J. Stolz, and M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

C. J. Stolz, L. M. Sheehan, M. K. von Gunten, R. P. Bevis, and D. J. Smith, “Advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Micrographs of the damage behavior of the catastrophic damage. (b)–(d) are the micrographs of the damage site shown in (a) induced by the second, third and fourth laser scan, respectively.

Fig. 2.
Fig. 2.

(a) Micrograph of the catastrophic damage after another 30 shots at the fluence of 58J/cm2. (b) Its surface profiler. The probe of the surface profiler moves along the red line.

Fig. 3.
Fig. 3.

(a) Micrograph of the catastrophic damage. (b) SEM micrograph of the delamination shown in (a).

Fig. 4.
Fig. 4.

(a)–(c) are the SEM micrographs on the locations of a, b, c found in the delaminated area illustrated by Fig. 3(b).

Fig. 5.
Fig. 5.

SEM micrograph of the conical pit in the catastrophic damage.

Fig. 6.
Fig. 6.

Cross sections of the nodular-ejection pits in the catastrophic failures.

Fig. 7.
Fig. 7.

Stable pits accompanied by the cracks or spalling of the first layers.

Fig. 8.
Fig. 8.

Incident direction of the laser, the locations of the initial delamination and nodular-ejection pit, and the moving direction of the produce plasma plume.

Metrics