Abstract

We report a high-contrast and narrow-linewidth resonant line profile by measuring the magneto-optical rotation of the transmitted light in a forward-scattering arrangement. We also report the splitting of the transmitted line profile at a strong microwave excitation. This profile may provide a good competitive scheme for the passive Rb frequency standard.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vanier and C. Audion, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).
  2. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [CrossRef]
  3. S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
    [CrossRef]
  4. S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
    [CrossRef]
  5. I. Novikova, D. Phillips, A. Zibrov, R. Walsworth, A. Taichenachev, and V. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622–624 (2006).
    [CrossRef]
  6. J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
    [CrossRef]
  7. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
    [CrossRef]
  8. V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
    [CrossRef]
  9. T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
    [CrossRef]
  10. D. Church and T. Hadeishi, “Trace-element detection method based on coherent scattering of radiation,” Appl. Phys. Lett. 24, 185–187 (1974).
    [CrossRef]
  11. A. Corney, B. P. Kibble, and G. W. Series, “Forward scattering of resonance radiation with special reference to double resonance and level-crossing experiments,” Proc. R. Soc. Lond. A 293, 70–93 (1966).
    [CrossRef]
  12. W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, “Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment,” Opt. Commun. 12, 400–404 (1974).
    [CrossRef]
  13. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [CrossRef]
  14. W. Gawlik, J. Kowalski, R. Neumann, and H. Wiegemann, “A new method for measuring oscillator strengths using the resonant Faraday effect in monochromatic light,” J. Phys. B 12, 3873–3882 (1979).
    [CrossRef]
  15. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  16. S. Pustelny, W. Lewoczko, and W. Gawlik, “Density effects in forward scattering of resonant light in rubidium vapor,” J. Opt. Soc. Am. B 22, 37–43 (2005).
    [CrossRef]
  17. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
    [CrossRef]

2011 (1)

T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
[CrossRef]

2010 (1)

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

2007 (1)

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

2006 (1)

2005 (3)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

S. Pustelny, W. Lewoczko, and W. Gawlik, “Density effects in forward scattering of resonant light in rubidium vapor,” J. Opt. Soc. Am. B 22, 37–43 (2005).
[CrossRef]

2002 (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

2000 (1)

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

1996 (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

1979 (1)

W. Gawlik, J. Kowalski, R. Neumann, and H. Wiegemann, “A new method for measuring oscillator strengths using the resonant Faraday effect in monochromatic light,” J. Phys. B 12, 3873–3882 (1979).
[CrossRef]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

1974 (2)

W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, “Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment,” Opt. Commun. 12, 400–404 (1974).
[CrossRef]

D. Church and T. Hadeishi, “Trace-element detection method based on coherent scattering of radiation,” Appl. Phys. Lett. 24, 185–187 (1974).
[CrossRef]

1966 (1)

A. Corney, B. P. Kibble, and G. W. Series, “Forward scattering of resonance radiation with special reference to double resonance and level-crossing experiments,” Proc. R. Soc. Lond. A 293, 70–93 (1966).
[CrossRef]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Audion, C.

J. Vanier and C. Audion, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).

Balik, S.

T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
[CrossRef]

Bednar, C. J.

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

Budker, D.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Church, D.

D. Church and T. Hadeishi, “Trace-element detection method based on coherent scattering of radiation,” Appl. Phys. Lett. 24, 185–187 (1974).
[CrossRef]

Corney, A.

A. Corney, B. P. Kibble, and G. W. Series, “Forward scattering of resonance radiation with special reference to double resonance and level-crossing experiments,” Proc. R. Soc. Lond. A 293, 70–93 (1966).
[CrossRef]

Fleischhauer, M.

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

Gawlik, W.

S. Pustelny, W. Lewoczko, and W. Gawlik, “Density effects in forward scattering of resonant light in rubidium vapor,” J. Opt. Soc. Am. B 22, 37–43 (2005).
[CrossRef]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

W. Gawlik, J. Kowalski, R. Neumann, and H. Wiegemann, “A new method for measuring oscillator strengths using the resonant Faraday effect in monochromatic light,” J. Phys. B 12, 3873–3882 (1979).
[CrossRef]

W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, “Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment,” Opt. Commun. 12, 400–404 (1974).
[CrossRef]

Hadeishi, T.

D. Church and T. Hadeishi, “Trace-element detection method based on coherent scattering of radiation,” Appl. Phys. Lett. 24, 185–187 (1974).
[CrossRef]

Hänsch, T. W.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Havey, M.

T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
[CrossRef]

Horrom, T.

T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
[CrossRef]

Kibble, B. P.

A. Corney, B. P. Kibble, and G. W. Series, “Forward scattering of resonance radiation with special reference to double resonance and level-crossing experiments,” Proc. R. Soc. Lond. A 293, 70–93 (1966).
[CrossRef]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Kowalski, J.

W. Gawlik, J. Kowalski, R. Neumann, and H. Wiegemann, “A new method for measuring oscillator strengths using the resonant Faraday effect in monochromatic light,” J. Phys. B 12, 3873–3882 (1979).
[CrossRef]

W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, “Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment,” Opt. Commun. 12, 400–404 (1974).
[CrossRef]

Lewoczko, W.

Lezama, A.

T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
[CrossRef]

Lukin, M. D.

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

Mandache, C.

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

Mikhailov, E.

T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
[CrossRef]

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

Neumann, R.

W. Gawlik, J. Kowalski, R. Neumann, and H. Wiegemann, “A new method for measuring oscillator strengths using the resonant Faraday effect in monochromatic light,” J. Phys. B 12, 3873–3882 (1979).
[CrossRef]

W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, “Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment,” Opt. Commun. 12, 400–404 (1974).
[CrossRef]

Novikova, I.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. Phillips, A. Zibrov, R. Walsworth, A. Taichenachev, and V. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622–624 (2006).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

Phillips, D.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. Phillips, A. Zibrov, R. Walsworth, A. Taichenachev, and V. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622–624 (2006).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

Pustelny, S.

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Sautenkov, V. A.

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Series, G. W.

A. Corney, B. P. Kibble, and G. W. Series, “Forward scattering of resonance radiation with special reference to double resonance and level-crossing experiments,” Proc. R. Soc. Lond. A 293, 70–93 (1966).
[CrossRef]

Taichenachev, A.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. Phillips, A. Zibrov, R. Walsworth, A. Taichenachev, and V. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622–624 (2006).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

Träger, F.

W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, “Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment,” Opt. Commun. 12, 400–404 (1974).
[CrossRef]

Vanier, J.

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[CrossRef]

J. Vanier and C. Audion, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).

Velichansky, V.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

Velichansky, V. L.

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

Walsworth, R.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. Phillips, A. Zibrov, R. Walsworth, A. Taichenachev, and V. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622–624 (2006).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Wiegemann, H.

W. Gawlik, J. Kowalski, R. Neumann, and H. Wiegemann, “A new method for measuring oscillator strengths using the resonant Faraday effect in monochromatic light,” J. Phys. B 12, 3873–3882 (1979).
[CrossRef]

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Yudin, V.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

I. Novikova, D. Phillips, A. Zibrov, R. Walsworth, A. Taichenachev, and V. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622–624 (2006).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

Zibrov, A.

I. Novikova, D. Phillips, A. Zibrov, R. Walsworth, A. Taichenachev, and V. Yudin, “Cancellation of light shifts in an N-resonance clock,” Opt. Lett. 31, 622–624 (2006).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

Zibrov, S.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

Zobrov, A.

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Appl. Phys. B (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

J. Vanier and C. Mandache, “The passive optically pumped Rb frequency standard: the laser approach,” Appl. Phys. B: Lasers Opt. 87, 565–593 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

D. Church and T. Hadeishi, “Trace-element detection method based on coherent scattering of radiation,” Appl. Phys. Lett. 24, 185–187 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

W. Gawlik, J. Kowalski, R. Neumann, and H. Wiegemann, “A new method for measuring oscillator strengths using the resonant Faraday effect in monochromatic light,” J. Phys. B 12, 3873–3882 (1979).
[CrossRef]

Opt. Commun. (1)

W. Gawlik, J. Kowalski, R. Neumann, and F. Träger, “Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiment,” Opt. Commun. 12, 400–404 (1974).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (4)

S. Zibrov, I. Novikova, D. Phillips, R. Walsworth, A. Zobrov, V. Velichansky, A. Taichenachev, and V. Yudin, “Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks,” Phys. Rev. A 81, 013833 (2010).
[CrossRef]

S. Zibrov, I. Novikova, D. Phillips, A. Taichenachev, V. Yudin, R. Walsworth, and A. Zibrov, “Three-photon-absorption resonance for all optical atomic clocks,” Phys. Rev. A 72, 011901 (2005).
[CrossRef]

V. A. Sautenkov, M. D. Lukin, C. J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, and V. L. Velichansky, “Enhancement of magneto-optical effects via large atomic coherence in optically dense media,” Phys. Rev. A 62, 023810 (2000).
[CrossRef]

T. Horrom, S. Balik, A. Lezama, M. Havey, and E. Mikhailov, “Polarization self-rotation in ultracold atomic Rb87,” Phys. Rev. A 83, 053850 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[CrossRef]

Proc. R. Soc. Lond. A (1)

A. Corney, B. P. Kibble, and G. W. Series, “Forward scattering of resonance radiation with special reference to double resonance and level-crossing experiments,” Proc. R. Soc. Lond. A 293, 70–93 (1966).
[CrossRef]

Prog. Opt. (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Other (2)

J. Vanier and C. Audion, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup for dispersion detection. P, polarizer and A, analyzer. (b) Four level model of a Rb87 D1 line interacting with the laser and microwave. MW, microwave field; Δ, microwave detuning; and δ, light detuning caused by Zeeman shift.

Fig. 2.
Fig. 2.

Theoretical (red dashed curve) and experimental (black solid curve) results of the FS profile versus microwave detuning at the condition of the microwave Rabi frequencies (a) Ωm=99×2πHz and (b) Ωm=440×2πHz.

Fig. 3.
Fig. 3.

Theoretical (solid curve) and experimental (triangles) results of the contrast of the dip versus different microwave Rabi frequencies. The light intensity is 45μW/cm2, and the microwave Rabi frequency varies from 50×2πHz to 1.4×2πkHz.

Fig. 4.
Fig. 4.

Theoretical (solid curve) and experimental (triangles) results of the linewidth of the dip versus different microwave Rabi frequencies. The light intensity is 45μW/cm2, and the microwave Rabi frequency varies from 50×2πHz to 1.4×2πkHz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ(τ)1Ibg1Q·C1τ,
Is=I0exp[(α++α)kL]sin2[(n+n)kL2],
α±=P2ΔNε0γγ2+δ±2,
n±=P2ΔNε0δ±γ2+δ±2,
P2kLε0δγ2+δ2ΔN=arctan(δγ),
ρ(Δ,Ωm)=Ωl24γΓ*Ωm2Ωm2+γ2+Δ2,
C(Ωm)=max(Is)Is(Δ=0,Ωm)max(Is),
Δνdip=max(Is)I(Δ=0,Ωm)max(Is)+I(Δ=0,Ωm)·Ωmπ.

Metrics